B. Sc. DEGREE END SEMESTER EXAMINATION - MARCH 2020 SEMESTER - 6: MATHEMATICS (CORE COURSE) COURSE: 15U6CRMAT12: LINEAR ALGEBRA AND METRIC SPACES
 (Common for Regular 2017 Admission \& Supplementary 2016 /2015/2014 Admissions)

PART A

Answer all questions. Each question carries 1 mark

1. Define linear independence of vectors.
2. What is the dimension of the space of all polynomials in one variable over the field of real numbers?
3. If a nonzero vector space is spanned by 5 vectors what can you say about its dimension?
4. Show that $T: R \rightarrow R$ defined by $T(x)=2 x$ is linear.
5. Linear transformation $T: R^{2} \rightarrow R^{2}$ is such that $T(0,1)=(0,0)$ and $T(1,0)=(0,2)$. Find $T(x, y)$.
6. Define the null space of a linear transformation.
7. What is the usual metric on R ?
8. What do you mean by an interior point of a metric space?
9. Define the convergence of a sequence in a metric space.
10. What is a dense set? Give an example.

PART B

Answer any Eight questions. Each question carries 2 marks

11. Show that a set containing the zero of a vector space is linearly dependent.
12. If an $n \times n$ matrix has two identical rows, what can be concluded about its rank?
13. Check whether $\{(1,0,-1),(0,0,2),(1,0,0)\}$ is a basis of R^{3}.
14. Give an example of a nonzero linear transformation with nonzero null space.
15. Prove that a subset of a vector space consisting of a single vector ' v ' is linearly dependent if and only if $v=0$.
16. Define the rank and nullity of a linear transformation.
17. What is an open subset of a metric space?
18. Show that a finite subset is a closed subset of a metric space.
19. Is the set of natural numbers \boldsymbol{N} is open in the metric space \boldsymbol{R} of real numbers. Justify
20. Give an example of a sequence with more than one limit point.
$(2 \times 8=16)$

PART C

Answer any Five questions. Each question carries 5 marks

21. Prove that the set of all polynomials in one variable is a subspace of the space of all functions from R into R.
22. Find the dimension of the space of all 2×2 matrices by establishing a basis.
23. Let V be the vector space of all polynomials of degree at most three. Let $T: V \rightarrow V$ be the linear transformation given by $T(p(x))=p^{\prime}(x)$ where $p^{\prime}(x)$ is the derivative of $p(x)$. Find the matrix of the linear transformation T relative to the basis $\left\{1, x, x^{2}, x^{3}\right\}$.
24. Let $T: R^{2} \rightarrow R^{2}$ be defined by $T(x, y)=(y, x)$. Prove that T is linear. What is the null space of T ? Is T invertible?
25. Prove that in any metric space X each open sphere is an open set. What about the converse. Justify.
26. Let X be a metric space and G be open in X. Prove that G is disjoint from a set A if and only if G is disjoint from \bar{A}.
27. Show that the Cantor set is nowhere dense.

PART D

Answer any Two questions. Each question carries 12 marks
28. (a) Let V be a vector space over R . Suppose that there are vectors $\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots \mathrm{~V}_{\mathrm{n}}$ which span V . Prove that V is finite dimensional.
(b) Find three vectors in R^{3} which are linearly dependent, and are such that any two of them are linearly independent.
29. The linear transformation T on R^{3} is defined by $T(x, y, z)=(3 x+z,-2 x+y,-x+2 y+4 z)$
(a) What is the matrix of T in the standard ordered basis for R^{3}.
(b) What is the matrix of T in the basis $\{(1,0,1),(-1,2,1),(2,1,1)\}$
30. Define $d(X, Y)=\max \left\{\left|x_{1}-x_{2}\right|,\left|y_{1}-y_{2}\right|\right\}$ where $X=\left(x_{1}, y_{1}\right)$ and $Y=\left(x_{2}, y_{2}\right)$. Show that d is metric on R^{2}. Draw the closed sphere of radius one unit and center at the origin.
31. (a) State and prove Cantor's Intersection Theorem.
(b) Let X and Y be metric spaces and f be function from X into Y. Prove that f is continuous if and only if $f^{-1}(G)$ is open in X whenever G is open in Y.
$(12 \times 2=24)$

