\qquad Name

B.Sc. DEGREE END SEMESTER EXAMINATION - MARCH 2020 SEMESTER -6: MATHEMATICS (CORE COURSE)
 COURSE: 15U6CRMAT11: DISCRETE MATHEMATICS

(Common for Regular 2017 Admission \& Supplementary 2016 /2015/2014 Admissions)
Max Marks: 75

PART A

Answer all questions. Each question carries 1 mark.

1. Define a graph G.
2. Find the number of edges in an acyclic graph with 19 vertices and 4 connected components.
3. Define cut vertex of a graph.
4. Draw a graph which has an Euler trail but not Eulerian.
5. Draw a graph and mark a perfect matching in it.
6. State Hall's Marriage Theorem.
7. Distinguish between plain text and cipher text.
8. State Knapsack problem.
9. Prove that if L is a lattice and if $0, u \in L$, then $0 \Lambda a=0$ and $u \Lambda a=a$ for all $a \in L$.
10. State the absorption laws of lattice.

PART B

Answer any eight questions. Each question carries $\mathbf{2}$ mark.

11. Define graph isomorphism.
12. Write the adjacency matrix of $\mathrm{K}_{1,1}$.
13. Define vertex connectivity of a graph G. Find $\kappa\left(\mathrm{K}_{\mathrm{n}}\right)$.
14. Give an example of a graph which has a Hamiltonian path but no hamiltonian cycle.
15. Find the closure of C_{4}.
16. Is a maximum matching perfect matching. Justify.
17. Encrypt the message 'RETURN HOME' using the linear cipher $C \equiv P+3(\bmod 26)$.
18. Solve the super increasing Knapsack Problem $54=x_{1}+2 x_{2}+5 x_{3}+9 x_{4}+18 x_{5}+40 x_{6}$.
19. Define a Poset. Give an example.
20. Prove that $a \wedge(b \wedge c)=(a \wedge b) \wedge c$.

PART C

Answer any five questions. Each question carries 5 mark.

21. If u and v are any two vertices of a graph G, then prove that every $u-v$ walk contains a $u-v$ path.
22. Prove that an edge e in a graph G is a bridge if and only if e is not part of any cycle in G.
23. Let G be a graph with n vertices where $\mathrm{n} \geq 2$. Then prove that G has atleast two vertices which are not cut vertices.
24. Prove that a simple graph G is Hamiltonian if and only if its closure is $C(G)$ is Hamiltonian.
25. Write a short note on Personnel Assignment Problem.
26. Decrypt the message BS FMX KFSGR JAPWL which was produced from a vignere cipher with keyword 'YES'.
27. Prove that a mapping $f: P \rightarrow Q$ is an isomorphism if and only if f is isotone and has an isotone inverse.

PART D

Answer any two questions. Each question carries 12 mark.

28. Prove that if G is a non-empty graph with at least two vertices then G is bipartite if and only if G has no odd cycles.
29. State and Prove Whitney's theorem.
30. A user of the Knapsack Cryptosystem has a private key consisting of the super increasing sequence $3,5,11,20,41$, the modulus $\mathrm{m}=85$ and multiplier $\mathrm{a}=44$.
(a) Find the users listed public key.
(b) With the aid of the public key encrypt the message 'HELP US'
31. (a) Prove that a Poset (L, \leq) is a Lattice if and only if every nonempty finite subset of L has Sup and Inf.
(b) Prove that in a lattice $L, a \wedge(b \vee c) \geq(a \wedge b) \vee(a \wedge c) \quad \forall a, b, c \in L$
