B.Sc. DEGREE END SEMESTER EXAMINATION - MARCH 2020

SEMESTER -6: MATHEMATICS (CORE COURSE)

COURSE: 15U6CRMAT11: DISCRETE MATHEMATICS

(Common for Regular 2017 Admission & Supplementary 2016 /2015/2014 Admissions)

Time: Three Hours

PART A

Answer all questions. Each question carries 1 mark.

- 1. Define a graph G.
- 2. Find the number of edges in an acyclic graph with 19 vertices and 4 connected components.
- 3. Define cut vertex of a graph.
- 4. Draw a graph which has an Euler trail but not Eulerian.
- 5. Draw a graph and mark a perfect matching in it.
- 6. State Hall's Marriage Theorem.
- 7. Distinguish between plain text and cipher text.
- 8. State Knapsack problem.
- 9. Prove that if L is a lattice and if 0, $u \in L$, then $0 \wedge a=0$ and $u \wedge a = a$ for all $a \in L$.
- 10. State the absorption laws of lattice.

PART B

Answer any eight questions. Each question carries 2 mark.

- 11. Define graph isomorphism.
- 12. Write the adjacency matrix of $K_{1,1}$.
- 13. Define vertex connectivity of a graph G. Find κ (K_n).
- 14. Give an example of a graph which has a Hamiltonian path but no hamiltonian cycle.
- 15. Find the closure of C₄.
- 16. Is a maximum matching perfect matching. Justify.
- 17. Encrypt the message 'RETURN HOME' using the linear cipher $C \equiv P + 3 \pmod{26}$.
- 18. Solve the super increasing Knapsack Problem $54 = x_1 + 2x_2 + 5x_3 + 9x_4 + 18x_5 + 40x_6$.
- 19. Define a Poset. Give an example.
- 20. Prove that $a \land (b \land c) = (a \land b) \land c$.

Max Marks: 75

 $(1 \times 10 = 10)$

(2 x 8 = 16)

PART C

Answer any five questions. Each question carries 5 mark.

- 21. If u and v are any two vertices of a graph G, then prove that every u-v walk contains a u-v path.
- 22. Prove that an edge e in a graph G is a bridge if and only if e is not part of any cycle in G.
- Let G be a graph with n vertices where n ≥ 2. Then prove that G has atleast two vertices which are not cut vertices.
- 24. Prove that a simple graph G is Hamiltonian if and only if its closure is C(G) is Hamiltonian.
- 25. Write a short note on Personnel Assignment Problem.
- 26. Decrypt the message BS FMX KFSGR JAPWL which was produced from a vignere cipher with keyword 'YES'.
- 27. Prove that a mapping f: $P \rightarrow Q$ is an isomorphism if and only if f is isotone and has an isotone inverse.

 $(5 \times 5 = 25)$

PART D

Answer any two questions. Each question carries 12 mark.

- 28. Prove that if G is a non-empty graph with at least two vertices then G is bipartite if and only if G has no odd cycles.
- 29. State and Prove Whitney's theorem.
- 30. A user of the Knapsack Cryptosystem has a private key consisting of the super increasing sequence
 - 3, 5, 11, 20, 41, the modulus m = 85 and multiplier a = 44.
 - (a) Find the users listed public key.
 - (b) With the aid of the public key encrypt the message 'HELP US'
- 31. (a) Prove that a Poset (L, \leq) is a Lattice if and only if every nonempty finite subset of L has Sup and Inf.
 - (b) Prove that in a lattice L, $a \land (b \lor c) \ge (a \land b) \lor (a \land c) \forall a,b,c \in L$

 $(12 \times 2 = 24)$
