B. Sc. DEGREE END SEMESTER EXAMINATION - MARCH 2020

SEMESTER - 6: MATHEMATICS (Common for Mathematics / Computer Applications)

COURSE: 15U6CRMAT9/15U6CRCMT7: REAL ANALYSIS

(Common for Regular - 2017 Admission / Improvement 2016/ Supplementary 2016/ 2015/2014 Admissions)

Time: Three Hours

Max. Marks: 75

Part A

Answer all questions. Each question carries 1 mark.

- 1. Give an example of a series Σu_n , where $\lim u_n = 0$, but the series is divergent.
- 2. When the geometric series $1 + r + r^2 + \cdots$ is convergent ?
- 3. Give an example of a divergent positive term series.
- 4. Define an alternating series.
- 5. Give an example of a function with a removable discontinuity.
- 6. Give an example of a continuous function on \mathbb{R} which does not attain its infimum.
- 7. Define $\bar{\int} f dx$ over [a, b].
- 8. Define refinement of a partition.
- 9. What is the pointwise limit of $f_n(x) = \frac{nx}{1 + n^2 x^2}$.
- 10. State the Cauchy criterion for the uniform convergence of a sequence of functions.

 $(10 \times 1 = 10)$

Part B
Answer any eight questions. Each question carries 2 marks.

- 11. State the limit form of the comparison test.
- 12. If Σu_n is a positive term series such that $\lim_{n\to\infty}(u_n)^{\frac{1}{n}}<1$, what can you say about the convergence of $\sum u_n$?
- 13. Show that the series $\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \cdots$ is not convergent.
- 14. Find the points of discontinuity of the function $f(x) = \frac{x |x|}{x}$.
- 15. Show that the function $f(x) = x^2$ is uniformly continuous on [-1, 1].
- 16. Show that a constant function is Riemann integrable.
- 17. Show that the function $f(x) = \begin{cases} 0, & \text{if } x \text{ rational} \\ 1, & \text{if } x \text{ irrational} \end{cases}$ is not Riemann integrable.

- 18. Compute $\int_{-1}^{1} f dx$, where f(x) = |x|.
- 19. Find an interval on which $\{f_n\}$ where $f_n(x) = \frac{1}{x+n}$ is uniformly convergent.
- 20. Prove that the sequence $f_n(x) = \frac{x}{1 + nx^2}$, x being real, converges uniformly on any closed interval I. $(8 \times 2 = 16)$

Part C

Answer any five questions. Each question carries 5 marks.

- 21. Prove that every absolutely convergent series is convergent.
- 22. Prove that if a series Σu_n of positive monotonic decreasing terms converges then not only $u_n \to 0$. but also $nu_n \to 0$ as $n \to \infty$.
- 23. Test for convergence of the series $\sum \frac{n^2-1}{n^2+1}x^n$, x>0.
- 24. Prove that if a function f is continuous on [a, b] and $f(a) \neq f(b)$, then it assumes every value between f(a) and f(b).
- 25. Prove that for any two partitions P_1 and P_2 , $L(P_1, f) \leq U(P_2, f)$.
- 26. Prove that if f is bounded and integrable on [a, b], then |f| is also bounded and integrable on [a, b] and $|\int_a^b f dx| \le \int_a^b |f| dx$.
- 27. Show that the sequence $\left\{\frac{nx}{1+n^3x^2}\right\}$ converges uniformly to zero for $0 \le x \le 1$. $(5 \times 5 = 25)$

Part D

Answer any two questions. Each question carries 12 marks.

- 28. (a) State and prove Cauchy root test:
 - (b) Study the convergence of the series $\sum_{n=0}^{\infty} \frac{3^n}{n!}$.
- 29. (a) Prove that if a function f is continuous on a closed interval [a, b], then it attains its bounds at least once in [a, b].
 - (b) Prove that if f is continuous on [a, b] and $f(x) \in [a, b]$ for every $x \in [a, b]$, then f has a fixed point.
- 30. (a) State and prove a necessary and sufficient condition for integrability of a bounded function.
 - (b) Prove that every continuous function is integrable.
- 31. (a) Show that the sequence $\left\{\frac{x}{n+x}\right\}$ is uniformly convergent in $[0,k], k < \infty$ but only pointwise convergent when the interval extends to ∞ .
 - (b) Discuss the convergence of the sequence of functions $\{x^n\}$ on [0,1]. $(2\times12=24)$