\qquad Name.

B. Sc. DEGREE END SEMESTER EXAMINATION - MARCH 2020

SEMESTER - 4: MATHEMATICS (CORE COURSE FOR MATHEMATICS \& COMPUTER APPLICATIONS) COURSE: 15U4CRMAT04-15U4CRCMT04, VECTOR CALCULUS, THEORY OF EQUATIONS AND NUMERICAL METHODS

(For Regular - 2018 Admission and Supplementary / Improvement 2017, 2016, 2015 Admissions)
Time: Three Hours
Max. Marks: 75

PART A

Answer all questions. Each question carries 1 mark.

1. Find the angle between the straight lines $x-y=1$ and $x-2 y=-1$.
2. Find the parametric equation of the line passing through the origin parallel to $i+2 j+k$.
3. Evaluate $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\left(\sin t \vec{i}+(1+\cos t) \vec{j}+\sec ^{2} t \vec{k}\right) d t$.
4. Integrate $f(x, y, z)=\left(x-3 y^{2}+z\right)$ over the line segment C joining the origin and the point $(1,1,1)$.
5. Check whether $F=y z \vec{i}+x z \vec{j}+x y \vec{k}$ is conservative.
6. Find the area of the region enclosed by $r(t)=a \cos t \vec{i}+a \sin t \vec{j}, 0 \leq t \leq 2 \pi$.
7. Find the gcd of $x^{2}+7 x+6$ and $x^{2}-5 x-6$.
8. Form an equation whose roots are the negative of the roots of $2 x^{3}-5 x^{2}+7=0$.
9. Find the first approximate root x_{1} using Newton Raphson formula to solve $x^{3}+x-1=0$ starting from $x_{0}=1$.
10. Write the formula to find the approximate solution of an equation using Regula Falsi method.
$(1 \times 10=10)$

PART B

Answer any eight questions. Each question carries 2 marks.
11. Find the distance from $\mathrm{S}(1,1,5)$ to the line $x=1+t, y=3-t, z=2 t$.
12. Solve the initial value problem for r as a vector function of $t \cdot \frac{d^{2} r}{d t^{2}}=-32 \vec{k}$, $r(0)=0, \frac{d r}{d t /_{t=0}}=8 \vec{i}+8 \vec{j}$.
13. Find the unit tangent vector to the curve $r(t)=\cos ^{3} \vec{t}+\sin ^{3} t \vec{k}, 0 \leq t \leq \frac{\pi}{2}$.
14. If $F=\nabla f$, find the potential function f for $F=2 x \vec{i}+3 y \vec{j}+4 z \vec{k}$.
15. Find the curl of $F=x^{2} z \vec{i}-2 y^{3} z^{2} \vec{j}+x y^{2} z \vec{k}$.
16. Evaluate $\iint_{S}(7 x i-z k) \cdot n d \sigma$ over a sphere $S: x^{2}+y^{2}+z^{2}=4$ using divergence theorem.
17. Solve $2 x^{3}-9 x^{2}-27 x+54=0$ given that its roots are in geometric progression.
18. Form an equation whose roots are 2 times the roots of $2 x^{3}-5 x^{2}+7=0$.
19. Find an approximate root of the equation $2 x=\cos x+3$ by iteration method in four steps starting from $x_{0}=\frac{\pi}{2}$.
20. Calculate $\sqrt{7}$ by Newton's iteration starting from $x_{0}=2$ in three steps.

PART C

Answer any five questions. Each question carries 5 marks.

21. Find the radius of the osculating circle to the curve $y=x^{2}$ at the origin.
22. Find the torsion τ for the helix $r(t)=a \cos t \vec{i}+a \sin t \vec{j}+b t \vec{k}$.
23. Show that $2 x d x+2 y d y+2 z d z$ is exact and evaluate $\int_{(0,0,0)}^{(2,3,-6)} 2 x d x+2 y d y+2 z d z$.
24. Find the area of the cap cut from the hemisphere $x^{2}+y^{2}+z^{2}=2, z \geq 0$ by the cylinder $x^{2}+y^{2}=1$
25. Remove the second term from the equation $x^{3}-6 x^{2}+4 x-7=0$.
26. Solve the equation $6 x^{4}+5 x^{3}-38 x^{2}+5 x+6=0$.
27. Find a root of $x^{3}+x^{2}-1=0$ by fixed point iteration method on $[0,1]$ in four steps.

PART D

Answer any two questions. Each question carries 12 marks.

28. Find the
a) unit normal to the surface $f(x, y, z)=x^{3}-x y^{2}-z$ at $\mathrm{P}_{0}(1,1,0)$.
b) Find the derivative of f in the direction of $2 \vec{i}-3 \vec{j}+6 \vec{k}$ at P_{0}.
c) In what direction does f change most rapidly at P_{0} and what are the rates of change in these directions.
29. Find the outward flux of $F=y z \vec{i}+x \vec{j}-z^{2} \vec{k}$ through the parabolic cylinder $y=x^{2}$, $0 \leq x \leq 1,0 \leq z \leq 4$.
30. Solve the equation $x^{4}-3 x^{2}-6 x-2=0$ by Ferrari's method.
31. a) Find an approximate root of $x^{3}-x-4=0$ lying between $a=1$ and $b=2$ using bisection method up to 3 steps.
b) Find an approximate solution to the equation $x e^{x}=2$ lying between 0 and 1 using regula falsi method in 3 steps.
