B.Sc. DEGREE END SEMESTER EXAMINATION - MARCH 2020

SEMESTER - 2: MATHEMATICS (COMPLEMENTARY COURSE FOR PHYSICS & CHEMISTRY) COURSE CODE: 19U2CPMAT2: CALCULUS II AND NUMERICAL ANALYSIS

(For Regular - 2019 Admission)

Time: Three Hours Max. Marks: 75

PART A

Answer any Ten questions. Each question carries 2 marks

- 1. Find the velocity and acceleration of the particle which moves along the curve $x = 2Sin\ 3t, y = 2\cos 3t, z = 8t$ at $t = \frac{\pi}{12}$.
- 2. If $\phi = x^3yz^3$ find $\nabla \emptyset$ at (1,1,1)
- 3. If $\bar{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$ find div \bar{r} and curl \bar{r} .
- 4. Given the vector field $\bar{F} = xz\,\hat{\imath} + yz\,\hat{\jmath} + z^2\,\hat{k}$. Evaluate $\int_C \bar{F} \, d\bar{r}$ where C is the straight line from the point (0,0,0) to (1,1,1).
- 5. Evaluate $\oint_C \bar{F} \cdot d\bar{r}$ by Stoke's Theorem, where $\bar{F} = y^2 \hat{\imath} + x^2 \hat{\jmath} (x+z) \hat{k}$ and C is the boundary of the triangle with vertices at (0,0,0), (1,0,0) and (1,1,0).
- 6. Find $\iint_S \bar{F} \cdot \hat{n} \, dS$ where $\bar{F} = (2x + 3z)\hat{i} (xz + y)\hat{j} + (y^2 + 2z)\hat{k}$ and S is the surface of the sphere having center at (3,-1, 2) and radius 3.
- 7. Given that

x:	1	2	3	4	5
<i>y</i> :	2	5	10	17	26

Find the value of $\nabla^2 y_5$.

- 8. Show that $(1 + \Delta)(1 \nabla) = 1$.
- 9. Use trapezoidal rule to evaluate $\int_4^8 \frac{dx}{x}$, using four equal subintervals.
- 10. Find the numerical value of the first derivative of the function f(x) defined as

x:	0.1	0.2	0.3	0.4
<i>y</i> :	1.10517	1.2214	1.34986	1.49182

- 11. Find by iteration method, a real root of $2x log_{10}x = 7$.
- 12. Find a root of $3x 1 = \cos x$ correct to three decimal places using Newton Raphson's method.

 $(2 \times 10 = 20)$

PART B

Answer any Five questions. Each question carries 5 marks.

- 13. Prove that $\nabla r^n = n r^{n-2} \bar{r}$ where $\vec{r} = x \hat{\imath} + y \hat{\jmath} + z \hat{k}$ and $r = |\bar{r}|$
- 14. Prove that f(x) \vec{r} is irrotational.
- 15. Evaluate $\iint_S \bar{A} \cdot \hat{n} \, ds$ where $\vec{A} = z \hat{\imath} + x \hat{\jmath} 3yz \hat{k}$ and S is the surface of the cylinder $x^2 + y^2 = 16$ included in the first octant between z = 0 and z = 5
- 16. If $\bar{F} = z\hat{\imath} + by\ \hat{\jmath} + cz\ \hat{k}$ where a,b,c are constants, show that $\iint_S \bar{F} \cdot d\bar{S} = \frac{4}{3}\pi(a+b+c)$ where S is the surface of the unit sphere.
- 17. If 'D' stands for the differential operator $\frac{d}{dx}$, prove that $D = \frac{1}{h} \left[\Delta \frac{1}{2} \Delta^2 + \frac{1}{3} \Delta^3 \cdots \right]$.
- 18. Using the following values apply Lagrange's interpolation formula to find the value of f(4)

<i>x</i> :	0	2	3	6
<i>f</i> (<i>x</i>):	-4	2	14	158

- 19. Compute the real root of the equation $xlog_{10}^x 1.2 = 0$ correct to three decimal places using Newton Raphson method.
- 20. Find a root of the following equation correct to three decimal places using Honer's method $x^3 + 3x^2 12x 11 = 0$.

$$(5 \times 5 = 25)$$

PART C

Answer any Three questions. Each question carries 10 marks.

- 21. (a) If $\bar{A}=3xz^2\hat{\imath}-yz\,\hat{\jmath}+(x+2z)\,\hat{k}$ find $Curl(Curl\bar{A})$. (b) If $\vec{r}=x\,\hat{\imath}+y\,\hat{\jmath}+z\,\hat{k}$ prove that $\frac{\vec{r}}{r^3}$ is solenoidal.
- 22. Verify divergence theorem for $\bar{F}=4x\hat{\imath}-2y^2\,\hat{\jmath}+z^2\,\hat{k}$ taken over the region bounded by the cylinder $x^2+y^2=4,z=0,z=3$.
- 23. The following table gives corresponding values of x and y. Prepare a forward difference table and express y as a function of x. Also obtain y when x = 2.5.

<i>x</i> :	0	1	2	3	4
f(x):	7	10	13	22	43

24. Find all root of the equation $x^4 - 3x + 1 = 0$ by Graeffe's method.

 $(10 \times 3 = 30)$
