B.Sc. DEGREE END SEMESTER EXAMINATION - MARCH 2020

SEMESTER - 2: MATHEMATICS (COMPLEMENTARY COURSE FOR PHYSICS \& CHEMISTRY) COURSE CODE: 19U2CPMAT2: CALCULUS II AND NUMERICAL ANALYSIS
(For Regular - 2019 Admission)
Time: Three Hours
Max. Marks: 75

PART A

Answer any Ten questions. Each question carries $\mathbf{2}$ marks

1. Find the velocity and acceleration of the particle which moves along the curve $x=$ $2 \operatorname{Sin} 3 t, y=2 \cos 3 t, z=8 t$ at $t=\frac{\pi}{12}$.
2. If $\phi=x^{3} y z^{3}$ find $\nabla \emptyset$ at $(1,1,1)$
3. If $\bar{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ find $\operatorname{div} \bar{r}$ and $\operatorname{curl} \bar{r}$.
4. Given the vector field $\bar{F}=x z \hat{\imath}+y z \hat{\jmath}+z^{2} \hat{k}$. Evaluate $\int_{C} \bar{F}$. $d \bar{r}$ where C is the straight line from the point $(0,0,0)$ to $(1,1,1)$.
5. Evaluate $\oint_{C} \bar{F} . d \bar{r}$ by Stoke's Theorem, where $\bar{F}=y^{2} \hat{\imath}+x^{2} \hat{\jmath}-(x+z) \hat{k}$ and C is the boundary of the triangle with vertices at $(0,0,0),(1,0,0)$ and $(1,1,0)$.
6. Find $\iint_{S} \bar{F} . \hat{n} d S$ where $\bar{F}=(2 x+3 z) \hat{\imath}-(x z+y) \hat{\jmath}+\left(y^{2}+2 z\right) \hat{k}$ and S is the surface of the sphere having center at $(3,-1,2)$ and radius 3 .
7. Given that

$x:$	1	2	3	4	5
$y:$	2	5	10	17	26

Find the value of $\nabla^{2} y_{5}$.
8. Show that $(1+\Delta)(1-\nabla)=1$.
9. Use trapezoidal rule to evaluate $\int_{4}^{8} \frac{d x}{x}$, using four equal subintervals.
10. Find the numerical value of the first derivative of the function $f(x)$ defined as

$x:$	0.1	0.2	0.3	0.4
$y:$	1.10517	1.2214	1.34986	1.49182

11. Find by iteration method, a real root of $2 x-\log _{10} x=7$.
12. Find a root of $3 x-1=\cos x$ correct to three decimal places using Newton Raphson's method.

PART B

Answer any Five questions. Each question carries 5 marks.

13. Prove that $\nabla r^{n}=n r^{n-2} \bar{r}$ where $\vec{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ and $r=|\bar{r}|$
14. Prove that $f(x) \vec{r}$ is irrotational.
15. Evaluate $\iint_{S} \bar{A} \cdot \hat{n} d s$ where $\vec{A}=z \hat{\imath}+x \hat{\jmath}-3 y z \hat{k}$ and S is the surface of the cylinder $x^{2}+$ $y^{2}=16$ included in the first octant between $z=0$ and $z=5$
16. If $\bar{F}=z \hat{\imath}+b y \hat{\jmath}+c z \hat{k}$ where a, b, c are constants, show that $\iint_{S} \bar{F} \cdot d \bar{S}=\frac{4}{3} \pi(a+b+c)$ where S is the surface of the unit sphere.
17. If ' D ' stands for the differential operator $\frac{d}{d x}$, prove that $D=\frac{1}{h}\left[\Delta-\frac{1}{2} \Delta^{2}+\frac{1}{3} \Delta^{3}-\cdots\right]$.
18. Using the following values apply Lagrange's interpolation formula to find the value of $f(4)$

$x:$	0	2	3	6
$f(x):$	-4	2	14	158

19. Compute the real root of the equation $x \log _{10}^{x}-1.2=0$ correct to three decimal places using Newton - Raphson method.
20. Find a root of the following equation correct to three decimal places using Honer's method $x^{3}+3 x^{2}-12 x-11=0$.

PART C

Answer any Three questions. Each question carries 10 marks.

21. (a) If $\bar{A}=3 x z^{2} \hat{\imath}-y z \hat{\jmath}+(x+2 z) \hat{k}$ find $\operatorname{Curl}(\operatorname{Curl} \bar{A})$.
(b) If $\vec{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ prove that $\frac{\vec{r}}{r^{3}}$ is solenoidal.
22. Verify divergence theorem for $\bar{F}=4 x \hat{\imath}-2 y^{2} \hat{\jmath}+z^{2} \hat{k}$ taken over the region bounded by the cylinder $x^{2}+y^{2}=4, z=0, z=3$.
23. The following table gives corresponding values of x and y. Prepare a forward difference table and express y as a function of x. Also obtain y when $x=2.5$.

$x:$	0	1	2	3	4
$f(x):$	7	10	13	22	43

24. Find all root of the equation $x^{4}-3 x+1=0$ by Graeffe's method.
