Dog	No	
Reg.	NO	

N I	
Mame	
vallic	

B.Sc. DEGREE END SEMESTER EXAMINATION - MARCH 2020

SEMESTER -2: MATHEMATICS (CORE COURSE)

COURSE: 19U2CRMAT2: ADVANCED CALCULUS AND TRIGONOMETRY

(For Regular - 2019 Admission)

Time: Three Hours

Max Marks: 75

Part-A

(Answer any 10 questions. Each questions carries 2 marks)

- 1. Find the n^{th} derivative of $\cos(ax+b)$.
- 2. Find the Maclaurin series expansion of $\sinh x$.
- 3. Define curvature and radius of curvature of a curve y = f(x) at any point P.
- 4. Find the envelop of the family of lines $y = mx + a\sqrt{1 + m^2}$ where m is the parameter.
- 5. Find the length of the curve $y = \log \sec x$ between the points given by x = 0 and $x = \frac{\pi}{4}$.
- 6. Find the total arc length of the hypercycloid $x = a\cos^3\theta$, $y = a\sin^3\theta$.
- 7. Find the area of the region enclosed by the cardioid $r = a(1 + \cos \theta)$.
- 8. Find by double integration, the volume of the solid generated by revolving the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ about the y axis.
- 9. Change the order of integration in $\int_{-a}^{a} \int_{0}^{\sqrt{a^2-y^2}} f(x,y) dx dy$.
- 10. Evaluate $\int_{0}^{\frac{\pi}{2}} \int_{0}^{a\cos\theta} r^4 dr d\theta.$
- 11. Separate into real and imaginary parts the expression $tan^{-1}(x+iy)$.
- 12. Prove that cosh(x + iy) = cosh x cos y + i sinh x sin y.

Part-B

(Answer any 5 questions. Each questions carries 5 marks)

- 13. State and prove Leibnitz theorem.
- 14. If $y = \cos(m\sin^{-1}x)$, prove that $(1-x^2)y_{n+2} (2n+1)xy_{n+1} + (m^2-n^2)y_n = 0$.
- 15. Prove that the area of a loop of the curve $r = a \sin 3\theta$ is $\frac{1}{12}\pi a^2$.
- 16. Find the length of the arc of the curve $x = t^2$, $y = t^3$ between t = 0 and t = 1.
- 17. Find the sum of the following series to infinity: $\cos x \sin x + \frac{1}{2!} \cos^2 x \sin 2x + \frac{1}{3!} \cos^3 x \sin 3x + \dots$
- 18. Factorize x^7 -1 into real factors.
- 19. Evaluate $\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{x+y} e^{z} dz dy dx.$
 - 20. If x is real, show that $\sinh^{-1} x = \log (x + \sqrt{x^2 + 1})$.

Part-C

(Answer any 3 questions. Each questions carries 10 marks)

- 21. a. Find the coordinates of the centre of curvature at the point $x = at^2$, y = 2at on the parabola $y^2 = 4ax$ and hence find its evolute.
 - b. Prove that the evolute of the cycloid $x = a(\theta \sin \theta)$, $y = a(1 \cos \theta)$ is another cycloid.
- 22. Find the volume of the solid enclosed by the sphere $x^2 + y^2 + z^2 = a^2$.
- 23. a. Express $\sin^8 \theta$ in a series of cosines of multiples of θ .
 - b. Expand $\cos 7\theta$ in descending powers of $\cos \theta$.
- 24. Change the order of integration in $\int_{0}^{a} \int_{\frac{x^2}{a}}^{2a-x} xy \, dxdy$ and hence evaluate the same.