Reg. No

Name

MSc DEGREE END SEMESTER EXAMINATION - MARCH 2020

SEMESTER 4 : MATHEMATICS

COURSE : 16P4MATT19EL : THEORY OF WAVELETS

(For Regular - 2018 Admission and Supplementary 2017, 2016 Admissions)

Time : Three Hours

Max. Marks: 75

Section A Answer All the Following (1.5 marks each)

- 1. If z = (1, 2, 0, 4), find z(9), z(-2) and z(0).
- 2. If $w \in l^2(Z_N)$, prove that $\check{w}(n+N) = \check{w}(n)$ for all $n \in Z_N$.
- 3. When we say there is a perfect reconstruction in the filter bank?
- 4. If N is divisible by 2^l , define $U^l: l^2(Z^l_{N/2}) -> l^2(Z_N).$
- 5. Define a p^{th} stage wavelet basis for $l^2(Z_N)$ is N is divisible by 2^p (p is a positive integer).
- 6. If $\psi_{-j,k} = R_{2^{j}k} f_{i}$ and $\phi_{-j,k} = R_{2^{j}k} g_{j}$, prove that $\hat{\phi}_{-j,k}(m) = e^{-2\pi i 2^{j} k m/N} \hat{\psi}_{-j,0}(m)$ and $\hat{\phi}_{-j,k}(m) = e^{-2\pi i 2^{j} k m/N} \hat{\phi}_{-j,0}(m)$.
- 7. Which of the following sequences is square summable? (i) $(Z(n))_{n=1}^{\infty}$, where $z(n) = \frac{1}{\sqrt{n}}$ (ii) $(w(n))_{n=1}^{\infty}$, where $w(n) = \frac{1}{n}$
- 8. Suppose that $\{z_k\}_{k=M}^{\infty}$ is a cauchy sequence in $l^2(Z)$. Prove that $\{z_k(n)\}_{k=M}^{\infty}$ is a cauchy sequence in C for all $n \in Z$.
- 9. If $z \in l^2(Z)$, prove that $(z^*)^{\wedge}(heta) = \hat{z}(heta+\pi)$
- 10. If $z, w \in l^2(Z)$, prove that $\langle R_j z, R_k w \rangle = \langle z, R_{k-j}, w \rangle$ for all $k, j \in Z$.

 $(1.5 \times 10 = 15)$

Section B Answer any 4 (5 marks each)

- 11. (a) Define convolution in $l^2(Z_N)$ (b) Is it a binary operation in $l^2(Z_N)$? Is it commutative? (c) If z=(1,1,0,2) and $w = (i,0,1,i) \in l^2(Z_4)$, find z * w
- 12. Suppose N is even and N=2M. Let $z \in l^2(Z_N)$ and $x, y, w \in l^2(Z_{N/2})$. Then prove that D(z)*w = D(z*U(w) and U(x)*U(y) = U(x*y).
- 13. Suppose N is divisible by 2 and $u_1 \in l^2(Z_N)$ Define $u_2 \in l^2(Z_{N/2})$ by $u_2(n) = u_1(n) + u_1(n + \frac{N}{2})$ Then prove that $\hat{u_2}(m) = \hat{u_1}(2m)$.
- 14. i) With the usual notations, prove that S_A is a subspace of H, if $A = \{a_j\}_{j \in Z}$ is an orthonormal set in a Hilbert space H.

ii) If $z \in l^2(Z)$ and $< z, a_j >= 0$ for all $j \in Z$, prove that < z, s >= 0 for all $s \in S_A$.

15. Suppose $\theta_0 \in (-\pi, \pi)$ and $\alpha > 0$ is sufficiently small that $-\pi < \theta_0 - \alpha < \theta_0 + \alpha < \pi$. Define $I = (\theta_0 - \alpha, \theta_0 + \alpha)$ and $J = (\theta_0 - \frac{\alpha}{2}, \theta_0 + \frac{\alpha}{2})$ Then prove that there exists a $\delta > 0$ and a sequence of real valued trigonometric polynomials $\{p_n(\theta)\}_{n=1}^{\infty}$ such that (i) $p_n(\theta) \ge 1$ for $\theta \in I$. (ii) $p_n(\theta) \ge (1 + \delta)^n$ for $\theta \in J$. (iii) $|p_n(heta)| \leq 1$ for $heta \in [-\pi,\pi) - I$.

16. (i) Prove that $l^1(Z)$ is a normed space. (ii) If $z, w \in l^1(Z)$, prove that $z * w \in l^1(Z)$.

 $(5 \times 4 = 20)$

Section C Answer any 4 (10 marks each)

- 17.1. (a) Define the IDFT \check{w} of $w \in l^2(Z_N)$ (b) Prove that $(\hat{z})^{\vee} = z$ and $(\check{w})^{\wedge} = w$ for all $z, w \in l^2(Z_N)$ (c) Prove that ' \wedge ' is both one-one and onto. OR
 - 2. (a) Suppose N is even and N=2M for some $M \in N$. If $w \in l^2(Z_N)$, then prove that $\{R_{2k}w\}_{k=0}^{M-1}$ is an orthonormal set with M elements if and only if $|\hat{w}(n)^2| + |\hat{w}(n+M)|^2 = 2$ for all n=0,1,2,..,M-1. (b) In the above statement prove that the phrase "With M elements" is significant.
- 18.1. (a) Define p^{th} stage wavelet basis for $l^2(Z_N)$ if N is divisible by 2^p .

(b) Suppose N is divisible by 2^l , $g_{l-1} \in l^2(Z_N)$ and the set $\{R_{2^{l-1}k} g_{l-1}\}_{k=0}^{\frac{N}{2^{l-1}}-1}$ is orthonormal with $N/2^{l-1}$ elements. Suppose u_l , $v_l \in l^2(Z_{N/2}^{l-1})$ and the system matrix $A_l(n)$ is unitary for all $n = 0, 1, 2, \ldots, (N/2^l) - 1$. Define $f_l = g_{l-1} * U^{l-1}(v_l)$ and $g_l = g_{l-1} * U^{l-1}(u_l)$ Then prove that $\{R_{2^lk}f_l\}_{k=0}^{\frac{N}{2^l}-1} \bigcup \{R_{2^lk}g_l\}_{k=0}^{\frac{N}{2^l}-1}$ is an orthonormal set with $N/2^{l-1}$ elements. OR

- 2. Describe Daubechie's D_6 wavelet system on Z_N .
- 19.1. Let $\{a_j\}_{j\in Z}$ be an orthonormal set in a Hilbert space H. Then Prove that the following statements are equivalent i) $\{a_j\}_{j\in Z}$ is Complete ii) For any f,g $\in H$, $< f,g >= \sum_{j\in Z} < f, a_j > \overline{< g, a_j >}$ iii) For any f $\in H$, $||f||^2 = \sum_{j\in Z} |< f, a_j > |^2$.
 - 2. i) If $z=(z(n))_{n\in Z}\in l^2(Z)$, prove that $\sum\limits_{n\in Z}z(n)e^{in heta}$ converges to an element of $L^2([-\pi,\pi)).$
 - ii) State and prove Plancherel's formula in $L^2([-\pi,\pi))$.
 - ii) State and prove Parseval's relation in $L^2([-\pi,\pi))$.
 - iii) State and prove Fourier inversion formula in $L^2([-\pi,\pi)).$
- 20.1. Suppose $w, z \in l^1(Z)$. Then prove that (i) $\{R_{2k}w\}_{k \in Z}$ is orthonormal if and only if $|\hat{w}(\theta)|^2 + |\hat{w}(\theta + \pi)|^2 = 2$ for all $\theta \in [0, \pi)$ and (ii) $< R_{2k}z, R_{2j}w >= 0$ for all $k, j \in Z$ if and only if $\hat{z}(\theta)\overline{\hat{w}(\theta)} + \hat{z}(\theta + \pi)\overline{\hat{w}(\theta + \pi)} = 0$ for all $\theta \in [0, \pi)$.

2. With the usual notations prove that $V_{-l}\oplus W_{-l}=V_{-l+1}.$

 $(10 \times 4 = 40)$