\qquad Name \qquad

MSc DEGREE END SEMESTER EXAMINATION - MARCH 2020

SEMESTER 4 : MATHEMATICS

COURSE : 16P4MATT17EL : MULTIVARIATE CALCULUS AND INTEGRAL TRANSFORMS

(For Regular - 2018 Admission and Supplementary - 2017, 2016 Admissions)

Time : Three Hours
Max. Marks: 75

Section A
 Answer any 10 (1.5 marks each)

1. State Convolution theorem for Fourier transform.
2. Find the Laplace transform of $f(x)=\cos a t$
3. Find the Laplace transform of sinhat
4. Explain the term Jacobian matrix
5. Let f be a function with values in \mathbb{R}^{m} which is differentiable at a point c in \mathbb{R}^{n} with total derivative $f^{\prime}(c)$. Show that $\left\|f^{\prime}(c)(v)\right\| \leq M\|v\|$, where $M=\sum_{k=1}^{m}\left\|\nabla f_{k}(c)\right\|$.
6. If $f=u+i v$ is a complex-valued function with a derivative at a point z in C, then $J_{f}(z)=\left|f^{\prime}(z)\right|^{2}$.
7. State the inverse function theorem
8. Define Jacobian determinant
9. State Stoke's theorem.
10. Define Derivative of a 0 -form and a k-forms.

Section B
 Answer any 4 (5 marks each)

11. Derive the exponential form of Fourier Integral Theorem
12. Show that $\int_{0}^{\infty} \frac{\cos a x}{b^{2}+x^{2}} d x=\frac{\pi}{2 b} e^{-|a| b}$, if $b>0$.
13. Find the directional derivative of the function $f=x^{2}-y^{2}+2 z^{2}$ at the point $P(1,2,3)$ in the direction of the line $P Q$ where Q is the point $5,0,4$
14. State and prove sufficient condition for a mapping to carry open sets onto open sets.
15. Show by an example that $D_{1,2} f(x, y)$ is not necessarily the same as $D_{2,1} f(x, y)$.
16. Suppose T is a $1-1 \zeta^{1}$ - mapping of an open set $E \subset R^{k}$ into R^{k} such that $J_{T}(x) \neq 0$ $\forall x \in E$. If f is a continuous function on R^{k} whose support is compactand lies in $T(E)$, then prove that $\int_{R^{k}} f(y) d y=\int_{R^{k}} f(T(x))\left|J_{T}(x)\right| d x$

Section C
 Answer any 4 (10 marks each)

17.1. State and prove Weisrstrass Approximation theorem

OR

2. (i) Prove that $\frac{\Gamma(p) \Gamma(p)}{\Gamma(2 p)}=2 \int_{0}^{\frac{1}{2}} x^{p-1}(1-x)^{p-1} d x$.
(ii) Make a suitable change of variable in (i) to obtain $\Gamma(2 p) \Gamma(1 / 2)=2^{2 p-1} \Gamma(p) \Gamma\left(p+\frac{1}{2}\right)$.
18.1. Assume that g is differentiable at a, with total derivative $g^{\prime}(a)$. Let $b=g(a)$ and assume that f is differentiable at b, with total derivative $f^{\prime}(b)$. Then prove that the composite function $h=f o g$ is differentiable at a, and the total derivative $h^{\prime}(a)$ is given by $h^{\prime}(a)=f^{\prime}(b) o g^{\prime}(a)$, the composition of the linear functions $f^{\prime}(b)$ and $g^{\prime}(a)$.

OR
2. a) Show that $m(S o T)=m(S) m(T) m(S o T)=m(S) m(T)$.
b) Compute the gradient vector $\nabla f(x, y, z)$ at the point $1,3,5)$ of the function
$f(x, y, z)=\frac{x^{3} y^{5} z^{5}}{1+x^{4}+y^{3}+z^{2}}$
19.1. State and prove a sufficient condition for differentiability

OR

2. a)In a plane triangle $A B C$, find the maximum value of $\cos A \cos B \cos C$
b)Show that the rectangular solid of maximum volume that can be inscribed in a given sphere is a cube.
20.1. Suppose F is a ζ^{\mid}- mapping of an open set $E \subset R^{n}$ into $R^{n} . o \in E . F(0)=0$ and $F^{\mid}(0)$ is invertible. Then prove that there is a neighbourhood of 0 in R^{n} in which a representation $F(x)=B_{1} \ldots \ldots \ldots B_{n}-1 G_{n} o \ldots \ldots o G_{1}(x)$ is valid

OR
2. Prove that if ω and λ are k - and m - forms respectively of class C^{\prime} in E, then $d(\omega \wedge \lambda)=(d \omega) \wedge \lambda+(-1)^{k} \omega \wedge d \lambda$ and if ω is of $C^{\prime \prime}$ in E, then $d^{2} \omega=0$.

$$
(10 \times 4=40)
$$

