\qquad Name \qquad

MSc DEGREE END SEMESTER EXAMINATION - MARCH 2020
SEMESTER 4 : MATHEMATICS
COURSE : 16P4MATT16EL : DIFFERENTIAL GEOMETRY
(For Regular - 2018 Admission and Supplementary - 2017, 2016 Admissions)

Time : Three Hours
Max. Marks: 75

Section A

Answer All the Following (1.5 Marks each)

1. Describe the level sets of $f\left(x_{1}, \ldots, x_{n+1}\right)=x_{1}^{2}+\cdots+x_{n+1}^{2}$, for $n=0,1,2$.
2. Define gradient of a scalar function.
3. Sketch the vector field on $\mathbb{R}^{2}: \mathbb{X}(p)=(p, X(p))$ where $X\left(x_{1}, x_{2}\right)=\left(-x_{1},-x_{2}\right)$.
4. Find the velocity, the acceleration, and the speed of parametrized curve $\alpha(t)=(\cos t, \sin t, t)$.
5. Define covariant derivative of a parallel vector field.
6. Show that if $\alpha: I \rightarrow \mathbb{R}^{n+1}$ is a parametrized curve with constant speed then $\ddot{\alpha}(t) \perp \dot{\alpha}(t)$ for all $t \in I$.
7. Prove that the value of $\nabla_{v}(f)$ is independent of the curve α in S passing through p with velocity v.
8. Find the length of the parameterized curve $\alpha(t)=\left(t^{2}, t^{3}\right), I=[0,2]$
9. Let $\alpha: I \rightarrow \mathbb{R}^{2}$ defined by $\alpha(t)=(\gamma \cos t, \gamma \sin t)$. Find $l(\alpha)$.
10. State inverse function theorem for n-surface.
$(1.5 \times 10=15)$

Section B

Answer any 4 (5 Marks each)
11. Show by an example that the set of vectors tangent at a point p of a level set might be all of \mathbb{R}_{p}^{n+1}.
12. Determine whether the vector field $\mathbb{X}\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}, 1+x_{1}^{2}, 0\right)$ where $U=\mathbb{R}^{2}$ is complete or not.
13. Show that a parametrized curve α in the unit n-sphere $x_{1}^{2}+\cdots+x_{n+1}^{2}=1$ is a geodesic if and only if it is of the form $\alpha(t)=e_{1} \cos a t+e_{2} \sin a t$ for some orthogonal pair of unit vectors $\left\{e_{1}, e_{2}\right\}$ in \mathbb{R}^{n+1} and some $a \in \mathbb{R}$.
14. Find the length of the parameterized curve $\alpha(t)=(\cos t, \sin t, \cos t, \sin t), I=[0,2 \pi]$
15. Compute $\nabla_{v} f$ where $f(q)=q \cdot q, \mathbf{v}=(p, v)$.
16. Let S be an n-surface in \mathbb{R}^{n+1} and $p \in S$. Show that the subset of S consisting of all points $q \in S$ which can be joined to p by a continuous curve in S is a connected n-surface.

Section C

Answer any 4 (10 Marks each)

17.1. Let \mathbb{X} be a smooth vector field on an open set $U \subset \mathbb{R}^{n+1}$ and let $p \in U$. Prove that there exists an open interval I containing 0 and an integral curve $\alpha: I \rightarrow U$ of \mathbb{X} such that (i) $\alpha(0)=p$
(ii) If $\beta: \tilde{I} \rightarrow U$ is any other integral curve of \mathbb{X} with $\beta(0)=p$, then $\tilde{I} \subset I$ and $\beta(t)=\alpha(t)$ for all $t \in I$

OR

2. Let S be an n-surface in \mathbb{R}^{n+1}, let \mathbb{X} be a smooth tangent vector field on S, and let $p \in S$. Prove that there exists an open interval I containing 0 and a parametrized curve $\alpha: I \rightarrow S$ such that
(i) $\alpha(0)=p$
(ii) $\dot{\alpha}(t)=\mathbb{X}(\alpha(t))$ for all $t \in I$
(iii) If $\beta: \tilde{I} \rightarrow S$ is any other parametrized curve in S satisfying (i) and (ii), then $\tilde{I} \subseteq I$ and $\beta(t)=\alpha(t)$ for all $t \in \tilde{I}$.
18.1. \quad Show that if the spherical image of a connected n-surface S is a single point then S is part or all of an n-plane.

OR

2. Let S be an n-surface in \mathbb{R}^{n+1}, let $\alpha: I \rightarrow S$ be a parametrized curve in S, let $t_{0} \in I$, and let $v \in S_{\alpha\left(t_{0}\right)}$. Show that there exists a unique vector field \mathbb{V}, tangent to S along α which is parallel and has $\mathbb{V}\left(t_{0}\right)=v$.
19.1. Let η be the 1 -form on $\mathbb{R}^{2}-\{0\}$ defined by $\eta=-\frac{x_{2}}{x_{1}^{2}+x_{2}^{2}} d x_{1}+\frac{x_{1}}{x_{1}^{2}+x_{2}^{2}} d x_{2}$. Prove that for $\alpha:[a, b] \rightarrow \mathbb{R}^{2}-\{0\}$ any closed piecewise smooth parameterized curve in $\mathbb{R}^{2}-\{0\}$, $\int_{\alpha} \eta=2 \pi k$ for some integer k.

OR
2. Define local parametrization of a plane curve C and prove that the local parametrization is unique upto a reparametrization.
20.1. Find the Gaussian curvature for
(i) $\psi(\theta, \phi)=((a+b \cos \phi) \cos \theta),(a+b \cos \phi) \sin \theta), \sin \phi)$.
(ii) $x_{1}^{2}+x_{2}^{2}-x_{3}^{2}=0, x_{3}>0$

OR
2. Let $\varphi: U \rightarrow \mathbb{R}^{n+1}$ be a parametrized n-surface in \mathbb{R}^{n+1} and let $p \in U$. Prove that there exists an open set $U_{1} \subset U$ about p such that $\varphi\left(U_{1}\right)$ is an n-surface in \mathbb{R}^{n+1}.

