Reg. No

Name

MSc DEGREE END SEMESTER EXAMINATION - MARCH 2020

SEMESTER 4 : MATHEMATICS

COURSE : 16P4MATT16EL : DIFFERENTIAL GEOMETRY

(For Regular - 2018 Admission and Supplementary - 2017, 2016 Admissions)

Time : Three Hours

Max. Marks: 75

Section A Answer All the Following (1.5 Marks each)

- 1. Describe the level sets of $f(x_1,\ldots,x_{n+1})=x_1^2+\cdots+x_{n+1}^2$, for n=0,1,2.
- 2. Define gradient of a scalar function.
- 3. Sketch the vector field on \mathbb{R}^2 : $\mathbb{X}(p) = (p, X(p))$ where $X(x_1, x_2) = (-x_1, -x_2)$.
- 4. Find the velocity, the acceleration, and the speed of parametrized curve $\alpha(t) = (\cos t, \sin t, t)$.
- 5. Define covariant derivative of a parallel vector field.
- 6. Show that if $\alpha: I \to \mathbb{R}^{n+1}$ is a parametrized curve with constant speed then $\ddot{\alpha}(t) \perp \dot{\alpha}(t)$ for all $t \in I$.
- 7. Prove that the value of $\nabla_v(f)$ is independent of the curve α in S passing through p with velocity v.
- 8. Find the length of the parameterized curve $lpha(t)=(t^2,t^3),\,\,I=[0,2]$
- 9. Let $lpha:I o \mathbb{R}^2$ defined by $lpha(t)=(\gamma\cos t,\gamma\sin t)$. Find l(lpha) .
- 10. State inverse function theorem for *n*-surface.

 $(1.5 \times 10 = 15)$

Section B Answer any 4 (5 Marks each)

- 11. Show by an example that the set of vectors tangent at a point p of a level set might be all of \mathbb{R}_p^{n+1} .
- 12. Determine whether the vector field $\mathbb{X}(x_1,x_2)=(x_1,x_2,1+x_1^2,0)$ where $U=\mathbb{R}^2$ is complete or not.
- 13. Show that a parametrized curve α in the unit n-sphere $x_1^2 + \cdots + x_{n+1}^2 = 1$ is a geodesic if and only if it is of the form $\alpha(t) = e_1 \cos at + e_2 \sin at$ for some orthogonal pair of unit vectors $\{e_1, e_2\}$ in \mathbb{R}^{n+1} and some $a \in \mathbb{R}$.
- 14. Find the length of the parameterized curve $lpha(t)=(\cos t,\sin t,\cos t,\sin t),\;I=[0,2\pi]$
- 15. Compute $abla_v f$ where $f(q) = q \cdot q$, $\mathbf{v} = (p, v)$.
- 16. Let S be an n-surface in \mathbb{R}^{n+1} and $p \in S$. Show that the subset of S consisting of all points $q \in S$ which can be joined to p by a continuous curve in S is a connected n-surface.

(5 x 4 = 20)

Section C Answer any 4 (10 Marks each)

17.1. Let \mathbb{X} be a smooth vector field on an open set $U \subset \mathbb{R}^{n+1}$ and let $p \in U$. Prove that there exists an open interval I containing 0 and an integral curve $\alpha : I \to U$ of \mathbb{X} such that (i) $\alpha(0) = p$ (ii) If $\beta : \tilde{I} \to U$ is any other integral curve of \mathbb{X} with $\beta(0) = p$, then $\tilde{I} \subset I$ and $\beta(t) = \alpha(t)$ for all $t \in I$

OR

- 2. Let S be an n-surface in \mathbb{R}^{n+1} , let \mathbb{X} be a smooth tangent vector field on S, and let $p \in S$. Prove that there exists an open interval I containing 0 and a parametrized curve $\alpha : I \to S$ such that (i) $\alpha(0) = p$ (ii) $\dot{\alpha}(t) = \mathbb{X}(\alpha(t))$ for all $t \in I$ (iii) If $\beta : \tilde{I} \to S$ is any other parametrized curve in S satisfying (i) and (ii), then $\tilde{I} \subseteq I$ and $\beta(t) = \alpha(t)$ for all $t \in \tilde{I}$.
- 18.1. Show that if the spherical image of a connected n-surface S is a single point then S is part or all of an n-plane.

OR

- 2. Let S be an n-surface in \mathbb{R}^{n+1} , let $\alpha : I \to S$ be a parametrized curve in S, let $t_0 \in I$, and let $v \in S_{\alpha(t_0)}$. Show that there exists a unique vector field \mathbb{V} , tangent to S along α which is parallel and has $\mathbb{V}(t_0) = v$.
- 19.1. Let η be the 1-form on $\mathbb{R}^2 \{0\}$ defined by $\eta = -\frac{x_2}{x_1^2 + x_2^2} dx_1 + \frac{x_1}{x_1^2 + x_2^2} dx_2$. Prove that for $\alpha : [a, b] \to \mathbb{R}^2 \{0\}$ any closed piecewise smooth parameterized curve in $\mathbb{R}^2 \{0\}$, $\int_{\alpha} \eta = 2\pi k$ for some integer k.
 - OR
 - 2. Define local parametrization of a plane curve C and prove that the local parametrization is unique upto a reparametrization.
- 20.1. Find the Gaussian curvature for (i) $\psi(\theta, \phi) = ((a + b\cos\phi)\cos\theta), (a + b\cos\phi)\sin\theta), \sin\phi).$ (ii) $x_1^2 + x_2^2 - x_3^2 = 0, x_3 > 0$ **OR**
- 2. Let $\varphi: U \to \mathbb{R}^{n+1}$ be a parametrized *n*-surface in \mathbb{R}^{n+1} and let $p \in U$. Prove that there exists an open set $U_1 \subset U$ about p such that $\varphi(U_1)$ is an *n*-surface in \mathbb{R}^{n+1} .

(10 x 4 = 40)