Reg. No

Name

M. Sc DEGREE END SEMESTER EXAMINATION - MARCH 2020

SEMESTER 2 : MATHEMATICS

COURSE : 16P2MATT09 : FUNCTIONAL ANALYSIS

(For Regular - 2019 Admission & Supplementary 2018/2017/2016 Admissions)

Time : Three Hours

Max. Marks: 75

Section A

Answer All the Following (1.5 marks each)

- Define equivalent norms. Give two equivalent norms in \mathbb{R}^2 . 1.
- Prove that the dot product with a fixed vector $a \in R^3$ is a bounded linear functional defined on 2. R^3 with norm ||a||.
- Let X be a finite dimensional vector space. If $x_0 \in X$ has the property that $f(x_0) = 0$ for all 3. $f\in X^*$, prove that $x_0=0$
- If X is a real inner product space, show that ||x|| = ||y|| implies $\langle x+y, x-y
 angle = 0$ 4.
- Define the direct sum of two subspaces Y and Z of a vector space X. 5.
- If Y is a closed subspace of a Hilbert space H, prove that Y^{\perp} is also a closed subspace of H. 6.
- If M is a non-empty subset of an inner product space X, prove that $M^{\perp}
 eq \phi$ 7.
- Define total orthonormal set in an inner product space X. 8.
- Let X be a normed space and X' its dual space. If $X \neq \{0\}$, show that $X' \neq \{0\}$ 9.
- If p is a sub linear functional defined on a vector space X, prove that $|p(x) p(y)| \leq p(x-y)$ 10. for all $x, y \in X$.

 $(1.5 \times 10 = 15)$

 $(5 \times 4 = 20)$

Section B Answer any 4 (5 marks each)

- Show that in an n-dimensional vector space X, the representation of any x as a linear 11. combination of a given basis vectors, e_1, e_2, \ldots, e_n is unique.
- 12. Prove that the range of a bounded linear operator need not be closed even though the null space of the operator is closed.
- 13. Prove that in an inner product space $X. x \perp y$ if and only if $||x + \alpha y|| = ||x \alpha y||$ for all scalars α .
- 14. Prove that in a complex inner product space X

$$Re\langle x,y
angle = rac{1}{4}[\|x+y\|^2 - \|x-y\|^2]$$

and $Im\langle x,y
angle=rac{1}{4}ig[\|x+iy\|^2-\|x-iy\|^2ig].$

- 15. If S and T are normal operators satisfying $ST^{st}=T^{st}S$ and $TS^{st}=S^{st}T$, show that S+T and ST are normal.
- 16. If X and Y are Banach spaces and $T_n \in B(X,Y)$; $n=1,2,3,\ldots$, show that the following statements are equivalent.

a. $(||T_n||)$ is bounded

- b. $(||T_n x||)$ is bounded for all $x \in X$
- c. $(|g(T_nx)|)$ is bounded for all $x\in X$ and all $g\in Y'$

Section C Answer any 4 (10 marks each)

- 17.1. a. Define convergence and absolute convergence of an infinite series in a normed space.
 - b. Show that in a Banach space absolute convergence always imply convergence
 - c. Show that in a normed space absolute convergence need not imply convergence.

OR

- 2. a. Suppose c is the set of all convergent sequences of scalars
 - (i) Prove that $c \subset l^{\infty}$.
 - (ii) Prove that c is a subspace of l^{∞}
 - (iii) Prove that c is a closed subspace of l^{∞}
 - b. Give an example of a non-closed subspace of l^∞
 - c. Prove that a linear operator preserves linear dependence.
- 18.1. a. Define the dual basis of a basis for an n dimensional vector space. hence, prove that, if X is an n-dimensional vector space, then dim $X^* = \dim X^{**} = n$
 - b. Prove that the dual space of l^1 is l^∞

OR

- 2. a. Let Y be a subspace of a Hilbert space H. Then prove that Y is complete if and only if Y is closed in H.
 - b. Prove that l^p with $p \neq 2$ is not an inner product space. Is l^2 an inner product space? Justify.
 - c. Let $T: X \to X$ be a bounded linear operator on a complex inner product space X. If $\langle Tx, x \rangle = 0$ for all $x \in X$, show that T = 0.
- 19.1. a. State and prove Bessel inequality
 - b. Explain the Gram-schmidt process for orthonormalizing a linearly independent set.
 - c. Let X be the inner product space of all real valued continuous functions defined on

[-1,1] with inner product $\langle x,y\rangle = \int_{-1}^{1} x(t)y(t)dt$. Then orthonormalize the first three terms of the sequence $(x_0, x_1, x_2, \dots,)$, where $x_j(t) = t^j$

OR

- 2. a. State and prove Riesz's theorem(Functionals on Hilbert spaces).
 - b. Prove that , for any fixed $z \in H$, the functional f defined on H by $f(x) = \langle x, z \rangle$ for all $x \in H$, is bounded linear and $\|f\| = \|z\|$.
- 20.1. a. Define the adjoint operator $T^{ imes}$ of a bounded linear operator T:X o Y , where X and Y are normed spaces
 - b. Prove that T^{\times} is bounded linear and $\|T^{\times}\| = \|T\|$ c. If $S, T \in B(X, Y)$, prove that $(S + T)^{\times} = S^{\times} + T^{\times}$.

OR

- 2. a. State Baire's category theorem
 - b. State and prove uniform boundedness theorem.

(10 x 4 = 40)