Reg. No

M. Sc DEGREE END SEMESTER EXAMINATION - MARCH 2020

SEMESTER 2 : MATHEMATICS

COURSE : 16P2MATT08 : ADVANCED COMPLEX ANALYSIS

(For Regular - 2019 Admission & Supplementary 2018/2017/2016 Admissions)

Time : Three Hours

Max. Marks: 75

Section A Answer All the Following (1.5 marks each)

- 1. Find the radius of convergence of $\sum n^P z^n$
- 2. Show that $\pi_{n=2}^\infty(1-rac{1}{n^2})=rac{1}{2}$
- 3. State Legender's duplication formula.
- 4. Define a Reimann's zeta function.
- 5. State Hadamard's theorem
- 6. State Poisson's Jensen's formula
- 7. State Riemann mapping theorem.
- 8. Define harmonic function. Give an example
- 9. Show that for any non-constant function f(z), the points of period module M are isolated.
- 10. Define weierstrass \mathcal{P} function.

 $(1.5 \times 10 = 15)$

Section B Answer any 4 (5 marks each)

- 11. Prove that A sequence is convergent if and only if it is a cauchy sequence.
- 12. Prove that the necessary and sufficient condition for the absolute convergence of the product $\pi_{n=1}^{\infty}(1+a_n)$ and the convergence of the series $\sum_{n=1}^{\infty} |a_n|$.

13. Prove that for
$$\sigma=ResS>1, rac{1}{\mathcal{C}(S)}=\pi_1^\infty(1-P_n^{-S})$$
 where P_n 's are primes

- 14. Prove that there are infinitily many primes
- 15. Suppose that the boundary of a simply connected region Ω contains a line segment γ as one sides free boundary arc. Prove that the function f(z) which maps Ω onto the unit disc can be extended to a function which is analytic and one-one on $\Omega \cup \gamma$. Also image of γ is an arc γ' on the unit circle.

16. Show that
$$rac{\mathcal{P}'(z)}{\mathcal{P}(z)-\mathcal{P}(u)}=\zeta(z-u)+\zeta(z+u)-2\zeta(z).$$

 $(5 \times 4 = 20)$

Section C Answer any 4 (10 marks each)

17.1. Prove the if f(z) is analytic in the region Ω containing z_0 then the representation,

$$f(z) = f(z_0) + rac{f'(z_0)}{1!}(z-z_0) + f''(z_0)rac{(z-z_0)^2}{2!} + \dots + f^{n-1}(z_0)rac{(z-z_0)^{n-1}}{(n-1)!} + \dots$$

is valid in the largest open disc with the center z_0 contained in Ω .

DR

- 2. Derive Legendre's Duplication formula
- 18.1. Let $\{b_r\}$ be a sequence of complex numbers with limit $r \to \infty b_r = \infty$ and let $P_r(\xi)$ be polynomials without constant term. Then Prove that there are functions which are meromorphic in the whole plane with poles at the points b_r and the corresponding singular parts $P_r\left(\frac{1}{z-b_r}\right)$. Moreover Prove that the most general meromorphic f_n of this band can be written in the form $f(z) = \sum \left[P_r\left(\frac{1}{z-b_r}\right) P_r(z)\right] + g(z)$ where $b_r(z)$ are suitably choosen polynomials and g(z) is analytic in the whole plane.

OR

- 2.
- a. Prove that $\zeta(S) = \frac{-\overline{|1-S|}}{2\pi i} \int_C \frac{(-z)^{S-1}}{e^z 1} dz$, where $(-z)^{S-1}$ is defined on the complement of

the positive real axis as $e^{(S-1)\log(-z)}, -\pi < Im\log(-z) < \pi$

b. Prove that zeta function can be extended to a meromorphic function in the whole complex plane whose only pole is a simple pole at S=1 with residue 1.

19.1. State Harnack's Principle by proving the corresponding Harnack's inequality.

OR

- a. Show that an elliptic function without poles is a constant.b. Prove that the sum of the residues of an elliptic function is zero.
- 20.1. a. Show that a non-constant elliptic function has equal number of zeroes and poles.
 - b. Show that the zeroes a_1, a_2, \ldots, a_n and the poles b_1, b_2, \ldots, b_n of an elliptic function satisfy $a_1 + \cdots + a_n \equiv b_1 + \cdots + b_n (\mod m)$.

OR

2. Resume the first order differential equation for $\omega = P(z)$.

 $(10 \times 4 = 40)$