Reg. No

Name

MSc DEGREE END SEMESTER EXAMINATION - MARCH 2020

SEMESTER 2 : MATHEMATICS

COURSE : 16P2MATT06 : ABSTRACT ALGEBRA

(For Regular - 2019 Admission and Supplementary - 2018/2017/2016 Admissions)

Time : Three Hours

Max. Marks: 75

Section A Answer All the Following (1.5 marks each)

- 1. What are the possible numbers of Sylow 5-subgroups of a group of order 255?
- 2. Does every abelian group of order divisible by 4 contain a cyclic subgroup of order 4? Justify your answer.
- 3. Is a direct product of cyclic groups cyclic? Justify your answer.
- 4. Give an example of an infinite finitely generated abelian group.
- 5. Is $\mathbb{Q}[x] \left/ \langle x^2 + 6x + 6
 ight
 angle$ a field? Justify your answer.
- 6. Show that $R[x]/\langle x^2+1
 angle\cong\mathbb{C}.$
- 7. Define primitive n^{th} root of unity in a field. Give an example.
- 8. Define the Frobenius automorphism σ_p ? What is $F_{\{\sigma_n\}}$?
- 9. What is the order of $G(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q})$?
- 10. True or False: \mathbb{R} is a splitting field over \mathbb{R} . Justify.

 $(1.5 \times 10 = 15)$

Section B Answer any 4 (5 marks each)

- 11. (a). Find the decomposition of D_4 into conjugacy classes. (b). Write the class equation for D_4 .
- 12. Show that a group of order 96 is not simple.
- 13. Prove that if D is an integral domain, then show that D[x] is an integral domain.
- 14. Consider the evaluation homomorphism $\phi_4: \mathbb{Z}_7[x] \to \mathbb{Z}_7$. Evaluate $\phi_4(3x^{106} + 5x^{99} + 2x^{53})$.
- 15. Show that if γ is constructible and $\gamma \notin \mathbb{Q}$, then $[\mathbb{Q}(\gamma) : \mathbb{Q}] = 2^r$, for some integer $r \ge 0$.
- 16. Show that if [E:F] = 2, then E is a splitting field over F.

(5 x 4 = 20)

Section C Answer any 4 (10 marks each)

17.1. (a). Find all Sylow 3-subgroups of S_4 and show that they are all conjugate. (b). Find two Sylow 2-subgroups of S_4 and show that they are conjugate. (c). Show that there are no simple groups of order p^rm , where p is a prime, r is a positive integer and m < p.

OR

- 2. (a) Let G be an abelian group of order 72.
 - (i) Can you say how many subgroups of order 8 G has?
 - (ii) Can you say how many subgroups of order 4 G has?

(b) Prove that every group of order $(35)^3$ has a normal subgroup of order 125?

(c) Prove that every group of prime power order is solvable. Is the converse true? Justify your answer.

18.1. (a). Let R be a ring, and let R^R be the set of all functions mapping R into R. For $\phi, \psi \in R^R$, define the sum $\phi + \psi$ and the product ϕ, ψ by

$$(\phi + \psi)(r) = \phi(r) + \psi(r)$$

 $(\phi, \psi)(r) = \phi(r)\psi(r)$
for $r \in R$, respectively. Show that $< R^R, +, .>$ is a ring.
(b) How many elements are there in $\mathbb{Z}^{\mathbb{Z}_2}$ and $\mathbb{Z}^{\mathbb{Z}_3}$?

(b). How many elements are there in $\mathbb{Z}_2^{\mathbb{Z}_2}$ and $\mathbb{Z}_3^{\mathbb{Z}_3}$?

OR

- 2. (a). Show that a polynomial f(x) ∈ F[x] of degree 2 or 3 is reducible over F if and only if it has a zero in F.Is the result true for polynomials of degree ≥ 4? Justify your answer.
 (b). How is the reducibility of polynomials over Z related over their reducibility over Q? Show that if f(x) = xⁿ + a_{n-1}xⁿ⁻¹ + ... + a₀ ∈ Z[x] with a₀ ≠ 0 and if f(x) has a zero in Q, then it has a zero m ∈ Z and m must divide a₀.
 (c). Show that f(x) = x⁴ 2x² + 8x + 1 is irreducible over Q.
- 19.1. Let $K = \mathbb{Q}(\sqrt{2}, \sqrt{3})$ and $F = \mathbb{Q}$. Show that K is a finite separable extension of F.

OR

- 2. (a). Let α be algebraic of degree n over F.Show that there are at most n different isomorphisms of F(α) onto a subfield of F and leaving F fixed.
 (b). Describe all extensions of the identity map of Q to an isomorphism mapping Q(³√2) onto a subfield of Q.
- 20.1. (a). State and prove *The Primitive Element Theorem*(b). Show that a finite extension of a field of characteristic zero is a simple extension.

OR

2. Show that every finite field is perfect.

 $(10 \times 4 = 40)$