\qquad Name \qquad

MSc DEGREE END SEMESTER EXAMINATION - MARCH 2020
 SEMESTER 2 : MATHEMATICS
 COURSE : 16P2MATT06 : ABSTRACT ALGEBRA

(For Regular - 2019 Admission and Supplementary - 2018/2017/2016 Admissions)

Time : Three Hours
Max. Marks: 75

Section A

Answer All the Following (1.5 marks each)

1. What are the possible numbers of Sylow 5 -subgroups of a group of order 255 ?
2. Does every abelian group of order divisible by 4 contain a cyclic subgroup of order 4? Justify your answer.
3. Is a direct product of cyclic groups cyclic? Justify your answer.
4. Give an example of an infinite finitely generated abelian group.
5. Is $\mathbb{Q}[x] /\left\langle x^{2}+6 x+6\right\rangle$ a field? Justify your answer.
6. Show that $R[x] /\left\langle x^{2}+1\right\rangle \cong \mathbb{C}$.
7. Define primitive $n^{t h}$ root of unity in a field.Give an example.
8. Define the Frobenius automorphism σ_{p} ? What is $F_{\left\{\sigma_{p}\right\}}$?
9. What is the order of $G(\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q})$?
10. True or False: \mathbb{R} is a splitting field over \mathbb{R}.Justify.

Section B

Answer any 4 (5 marks each)

11. (a). Find the decomposition of D_{4} into conjugacy classes.
(b). Write the class equation for D_{4}.
12. Show that a group of order 96 is not simple.
13. Prove that if D is an integral domain, then show that $D[x]$ is an integral domain.
14. Consider the evaluation homomorphism $\phi_{4}: \mathbb{Z}_{7}[x] \rightarrow \mathbb{Z}_{7}$. Evaluate $\phi_{4}\left(3 x^{106}+5 x^{99}+2 x^{53}\right)$.
15. Show that if γ is constructible and $\gamma \notin \mathbb{Q}$, then $[\mathbb{Q}(\gamma): \mathbb{Q}]=2^{r}$, for some integer $r \geq 0$.
16. Show that if $[E: F]=2$, then E is a splitting field over F.

Section C
 Answer any 4 (10 marks each)

17.1. (a). Find all Sylow 3 -subgroups of S_{4} and show that they are all conjugate.
(b). Find two Sylow 2 -subgroups of S_{4} and show that they are conjugate.
(c). Show that there are no simple groups of order $p^{r} m$, where p is a prime, r is a positive integer and $m<p$.

OR

2. (a) Let G be an abelian group of order 72.
(i) Can you say how many subgroups of order 8 G has?
(ii) Can you say how many subgroups of order 4 G has?
(b) Prove that every group of order $(35)^{3}$ has a normal subgroup of order 125 ?
(c) Prove that every group of prime power order is solvable.Is the converse true? Justify your answer.
18.1. (a). Let R be a ring, and let R^{R} be the set of all functions mapping R into R. For $\phi, \psi \in R^{R}$, define the sum $\phi+\psi$ and the product $\phi . \psi$ by

$$
\begin{gathered}
(\phi+\psi)(r)=\phi(r)+\psi(r) \\
(\phi \cdot \psi)(r)=\phi(r) \psi(r)
\end{gathered}
$$

for $r \in R$, respectively. Show that $<R^{R},+, .>$ is a ring.
(b). How many elements are there in $\mathbb{Z}_{2}^{\mathbb{Z}_{2}}$ and $\mathbb{Z}_{3}^{\mathbb{Z}_{3}}$?

OR

2. (a). Show that a polynomial $f(x) \in F[x]$ of degree 2 or 3 is reducible over F if and only if it has a zero in F.Is the result true for polynomials of degree ≥ 4 ? Justify your answer.
(b). How is the reducibility of polynomials over \mathbb{Z} related over their reducibility over \mathbb{Q} ? Show that if $f(x)=x^{n}+a_{n-1} x^{n-1}+\ldots+a_{0} \in \mathbb{Z}[x]$ with $a_{0} \neq 0$ and if $f(x)$ has a zero in \mathbb{Q}, then it has a zero $m \in \mathbb{Z}$ and m must divide a_{0}.
(c). Show that $f(x)=x^{4}-2 x^{2}+8 x+1$ is irreducible over \mathbb{Q}.
19.1. Let $K=\mathbb{Q}(\sqrt{2}, \sqrt{3})$ and $F=\mathbb{Q}$.Show that K is a finite separable extension of F.

OR

2. (a). Let α be algebraic of degree n over F. Show that there are at most n different isomorphisms of $F(\alpha)$ onto a subfield of \bar{F} and leaving F fixed.
(b). Describe all extensions of the identity map of \mathbb{Q} to an isomorphism mapping $\mathbb{Q}(\sqrt[3]{2})$ onto a subfield of $\overline{\mathbb{Q}}$.
20.1. (a). State and prove The Primitive Element Theorem
(b). Show that a finite extension of a field of characteristic zero is a simple extension.

OR

2. Show that every finite field is perfect.
$(10 \times 4=40)$
