B. Sc. DEGREE END SEMESTER EXAMINATION - MARCH 2019
 SEMESTER - 6: MATHEMATICS (CORE COURSE)
 COURSE: 15U6CRMAT13: OPERATIONS RESEARCH

(Common for Regular - 2016 Admission / Supplementary-Improvement 2015/2014 admissions)
Time: Three Hours
Max. Marks: 75

SECTION A
 Answer all questions

1. Define convex Hull of a set.
2. What is meant by extreme point of a convex set?
3. Define norm of a vector space.
4. The optimal solution to a linear programming problem is always unique .True or False.
5. Define artificial variables.
6. Define Loop of a transportation problem
7. Define a balanced transportation problem.
8. What do you mean by queue discipline?
9. Define waiting time of a customer in the system.
10. What is meant by traffic intensity?

SECTION B

Answer any Eight questions
11. Define subspace of a vector space with one example
12. Write the standard form of the linear programming problem (L.P.P).
13. Formulate the L.P.P

A person has option of investing Rs. 10,000 in two plans A and B, plan A guarantees a return of 50 paisa on each rupee invested after a period of 3 years and plan B guarantees that each rupee invested will an one and a half rupees after six years. How should the person invest his money to maximize his earnings on a period of 6 years, if he is not willing to invest more than 60% in B ?
14. Show that the vector $\left[\begin{array}{cc}1-2 & -2\end{array}\right]^{1}$ and $\left[\begin{array}{ll}2-1 & 2\end{array}\right]^{1}$ are orthogonal. Find a vector orthogonal to both these vectors.
15. Write the dual of the following L.P.P
$\operatorname{Min} x_{1}+x_{2}$
Sub $2 x_{1}+x_{2} \geq 8$
$3 x_{1}+7 x_{2} \geq 21$
$x_{1}, x_{2} \geq 0$
16. Find the initial basic feasible solution of the transportation problem.

	D_{1}	D_{2}	D_{3}	D_{4}	
O_{1}	4	5	8	3	50
O_{2}	5	4	3	2	30
O_{3}	1	5	6	3	20
	40	30	20	10	

17. Show that an assignment problem in a special type of linear programming problem
18. Write the different queue discipline.
19. Describe service time distribution.
20. Describe customer's behaviour in a queue.
$(2 \times 8=16)$

SECTION C

Answer any Five questions
21. Show that vertex S_{F} \{set of Basic feasible solution\} is a basic feasible solution.
22. Solve graphically.

Minimize $-4 x_{1}-5 x_{2}$
Subject to $\quad x_{1}-2 x_{2} \leq 2$

$$
\begin{gathered}
2 x_{1}+x_{2} \leq 6 \\
x_{1}+2 x_{2} \leq 5 \\
-x_{1}+x_{2} \leq 2 \\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

23. Solve by dual simplex method

Minimize $2 x_{1}+3 x_{2}$
Subject to $2 x_{1}+3 x_{2} \leq 30$
$x_{1}+2 x_{2} \geq 10$
$x_{1}, x_{2} \geq 0$
24. Find the initial Basic solution of the transportation problem by VAM and find the cost.

	D_{1}	D_{2}	D_{3}	D_{4}	
s_{1}	19	30	50	10	7
s_{2}	70	30	40	60	9
s_{3}	40	8	70	20	18
	5	8	7	14	34

25. A department has five employees with 5 jobs to be performed. The time in hours each men will take to perform each job is given with effectiveness matrix.

	1	2	3	4	5
A	10	5	13	15	16
B	3	9	18	13	6
C	10	7	2	2	2
D	7	11	9	7	12
E	7	9	10	4	12

How should the jobs be allotted one per employee so has to minimize the total man hours?
26. Show that if $X \in E_{n}, V \subseteq E_{n}$ such that $V=\left\{X\left|X=\left[x_{1}, \ldots ., x_{n}\right]^{\prime}\right| x_{1}+x_{2}+\cdots+x_{n}=0\right\}$ then V is subspace of E_{n}.
27. If the no. of arrivals n, in time t follows Poisson distribution. Find the distribution of the inter arrival times.
$(5 \times 5=25)$

SECTION D
 Answer any Two questions

28. Solve by Two phase simplex Method.

Minimize $2 x_{1}-3 x_{2}+6 x_{3}$
Subject to $3 x_{1}-4 x_{2}-6 x_{3} \leq 2$
$2 x_{1}+x_{2}+2 x_{3} \geq 11$
$x_{1}+3 x_{2}-2 x_{3} \leq 5$
$x_{1}, x_{2}, x_{3} \geq 0$
29. Solve by simplex method.

Maximise $x_{1}+x_{2}+x_{3}$
Subject to $2 x_{1}+x_{2}+2 x_{3} \leq 2$
$4 x_{1}+2 x_{2}+x_{3} \leq 2$
$x_{1}, x_{2}, x_{3} \geq 0$
30. Solve the transportation problem. Food bags have to be lifted by 3 different types of aircraft A_{1}, A_{2}, A_{3} from an airport and dropped in flood affected villages $V_{1}, V_{2}, V_{3}, V_{4}, V_{5}$. The quantity of food that can be carried in one trip by aircraft. A_{i} to village v_{j} is given in the following table. The total no: of trips that A_{i} can make in a day is given in the last column .The no: of trip possible each day to village v_{i} is given in the last row. Find the no: of trips each aircraft should make on each village so that the total quantity of food transported in a day is maximum.

	V_{1}	V_{2}	V_{3}	V_{4}	V_{5}	
A_{1}	10	8	6	9	12	50
A_{2}	5	3	8	4	10	90
A_{3}	7	9	6	10	4	60
	100	80	70	40	20	

31. If the arrivals are completely random. Show that the probability distribution of no: of arrivals in fixed time interval follows a Poisson distribution.
