Max. Marks: 75

B. Sc. DEGREE END SEMESTER EXAMINATION - MARCH 2019

SEMESTER - 6: MATHEMATICS (CORE COURSE)

COURSE: 15U6CRMAT13: OPERATIONS RESEARCH

(Common for Regular - 2016 Admission / Supplementary-Improvement 2015/2014 admissions)

Time: Three Hours

SECTION A

Answer **all** questions

- 1. Define convex Hull of a set.
- 2. What is meant by extreme point of a convex set?
- 3. Define norm of a vector space.
- 4. The optimal solution to a linear programming problem is always unique .True or False.
- 5. Define artificial variables.
- 6. Define Loop of a transportation problem
- 7. Define a balanced transportation problem.
- 8. What do you mean by queue discipline?
- 9. Define waiting time of a customer in the system.
- 10. What is meant by traffic intensity?

 $(1 \times 10 = 10)$

SECTION B

Answer **any Eight** questions

- 11. Define subspace of a vector space with one example
- 12. Write the standard form of the linear programming problem (L.P.P).
- 13. Formulate the L.P.P

A person has option of investing Rs.10, 000 in two plans A and B, plan A guarantees a return of 50 paisa on each rupee invested after a period of 3 years and plan B guarantees that each rupee invested will an one and a half rupees after six years. How should the person invest his money to maximize his earnings on a period of 6 years, if he is not willing to invest more than 60% in B?

- 14. Show that the vector $\begin{bmatrix} 1-2 & -2 \end{bmatrix}^1$ and $\begin{bmatrix} 2-1 & 2 \end{bmatrix}^1$ are orthogonal. Find a vector orthogonal to both these vectors.
- 15. Write the dual of the following L.P.P

 $\begin{aligned} & \operatorname{Min} x_1 + x_2 \\ & \operatorname{Sub} 2x_1 + x_2 \geq 8 \\ & 3x_1 + 7x_2 \geq 21 \\ & x_1, x_2 \geq 0 \end{aligned}$

16. Find the initial basic feasible solution of the transportation problem.

	D_1	D_2	D_3	D_4	
O ₁	4	5	8	3	50
O ₂	5	4	3	2	30
O ₃	1	5	6	3	20
	40	30	20	10	

 $(2 \times 8 = 16)$

- 17. Show that an assignment problem in a special type of linear programming problem
- 18. Write the different queue discipline.
- 19. Describe service time distribution.
- 20. Describe customer's behaviour in a queue.

SECTION C

Answer any Five questions

- 21. Show that vertex S_F {set of Basic feasible solution} is a basic feasible solution.
- 22. Solve graphically.

Minimize $-4x_1 - 5x_2$ Subject to $x_1 - 2x_2 \le 2$ $2x_1 + x_2 \le 6$ $x_1 + 2x_2 \le 5$ $-x_1 + x_2 \le 2$ $x_1, x_2 \ge 0$ 23. Solve by dual simplex method

Minimize $2x_1 + 3x_2$

Subject to $2x_1 + 3x_2 \le 30$

$$x_1 + 2x_2 \ge 10$$

$$x_1, x_2 \ge 0$$

24. Find the initial Basic solution of the transportation problem by VAM and find the cost.

	D_1	<i>D</i> ₂	D_3	D_4	
<i>s</i> ₁	19	30	50	10	7
<i>S</i> ₂	70	30	40	60	9
<i>S</i> ₃	40	8	70	20	18
	5	8	7	14	34

25. A department has five employees with 5 jobs to be performed. The time in hours each men will take to perform each job is given with effectiveness matrix.

	1	2	3	4	5
А	10	5	13	15	16
В	3	9	18	13	6
С	10	7	2	2	2
D	7	11	9	7	12
E	7	9	10	4	12

How should the jobs be allotted one per employee so has to minimize the total man hours? 26. Show that if $X \in E_n$, $V \subseteq E_n$ such that $V = \{X \mid X = [x_1, \dots, x_n]' \mid x_1 + x_2 + \dots + x_n = 0\}$ then V is subspace of E_n .

27. If the no. of arrivals n, in time t follows Poisson distribution. Find the distribution of the inter arrival times.

(5 x 5 = 25)

SECTION D

Answer any Two questions

28. Solve by Two phase simplex Method.

Minimize $2x_1 - 3x_2 + 6x_3$ Subject to $3x_1 - 4x_2 - 6x_3 \le 2$ $2x_1 + x_2 + 2x_3 \ge 11$ $x_1 + 3x_2 - 2x_3 \le 5$ $x_1, x_2, x_3 \ge 0$

29. Solve by simplex method.

Maximise $x_1 + x_2 + x_3$ Subject to $2x_1 + x_2 + 2x_3 \le 2$ $4x_1 + 2x_2 + x_3 \le 2$ $x_1, x_2, x_3 \ge 0$

30. Solve the transportation problem. Food bags have to be lifted by 3 different types of aircraft A_1, A_2, A_3 from an airport and dropped in flood affected villages V_1, V_2, V_3, V_4, V_5 . The quantity of food that can be carried in one trip by aircraft. A_i to village v_j is given in the following table. The total no: of trips that A_i can make in a day is given in the last column .The no: of trip possible each day to village v_i is given in the last row. Find the no: of trips each aircraft should make on each village so that the total quantity of food transported in a day is maximum.

	<i>V</i> ₁	<i>V</i> ₂	V ₃	V_4	V_5	
<i>A</i> ₁	10	8	6	9	12	50
<i>A</i> ₂	5	3	8	4	10	90
<i>A</i> ₃	7	9	6	10	4	60
	100	80	70	40	20	

31. If the arrivals are completely random. Show that the probability distribution of no: of arrivals in fixed time interval follows a Poisson distribution.

 $(12 \times 2 = 24)$
