B. Sc. DEGREE END SEMESTER EXAMINATION - MARCH 2019 SEMESTER - 6: MATHEMATICS (CORE COURSE)
 COURSE: 15U6CRMAT12: LINEAR ALGEBRA AND METRIC SPACES

(Common for Regular - 2016 Admission / Supplementary-Improvement 2015/2014 admissions)
Time: Three Hours
Max. Marks: 75
PART A
Answer all questions. Each question carries 1 mark

1. Define vector space.
2. Give an example of an infinite dimensional vector space.
3. Let W be a nonzero subspace of a vector space V of dimension 4 . What can you say about the dimension of W ?
4. Define $T: R \rightarrow R$ by $T(x)=x+2$. Is T linear?
5. Linear transformation $T: R^{2} \rightarrow R^{2}$ is such that $T(0,1)=(0,0)$ and $T(1,0)=(0,2)$. Find $T(x, y)$.
6. What do you mean by the nullity of a linear transformation?
7. Define metric. Give an example of a metric on R.
8. Give an example of an open subset of R which is not an interval.
9. What is a complete metric space?
10. What is a dense set? Give an example.

PART B

Answer any Eight questions. Each question carries 2 marks
11. Can you find a set of three vectors of R^{2} which is linearly independent? Justify.
12. What is the span of a set of vectors? If a vector space is spanned by n vectors, what can you say about its dimension?
13. Is it possible to extend the set $\{(1,0,-1),(0,-1,2)\}$ to a basis of R^{3} ?
14. Prove that the range of a linear transformation $T: V \rightarrow W$ is a subspace of W.
15. Let A be an $m \times n$ matrix over R . Can you define a linear transformation from R^{n} into R^{m} using A ?
16. Define the rank and nullity of a linear transformation.
17. Differentiate between open sphere and open set.
18. Show that singleton set is a closed subset of a metric space.
19. When do you say that a function between two metric spaces is continuous? Give an example of a function which is continuous at every point of the domain.
20. What is the difference between limit and limit point of a sequence? $(2 \times 8=16)$

PART C

Answer any Five questions. Each question carries 5 marks
21. Show that a linearly independent subset of a vector space can be extended to a basis of the space.
22. Find the dimension of the space of all 2×2 matrices by establishing a basis.
23. Let V be an n - dimensional vector space and let T be a linear transformation from V into V such that the range and null space of T are identical. Prove that n is even. Find such a T .
24. Let $T: R^{2} \rightarrow R^{2}$ be defined by $T(x, y)=(-y, x)$. Prove that T is linear. Find the matrix of T in the standard basis $\{(1,0),(0,1)\}$ of R^{2}.
25. Let X be a metric space with metric d. Show that d_{1} defined by $d_{1}(x, y)=d(x, y) /(1+d(x, y))$ is also a metric on X. Prove that $\left(X, d_{1}\right)$ is a bounded metric space.
26. In a metric space prove that intersection of a finite number of open sets is open. What can you say about arbitrary intersection of open sets?
27. Let X and Y be metric spaces. If $f: X \rightarrow Y$ is continuous, prove that for any sequence $\left(x_{n}\right) \rightarrow x$ in X implies $\left(f\left(x_{n}\right)\right) \rightarrow f(x)$ in Y.

PART D

Answer any Two questions. Each question carries $\mathbf{1 2}$ marks

28. (a) Let V be the real vector space of all functions from R into R. Which of the following sets of functions are subspaces of V ? (a) all f such that $f(0)=f(1)$ (b) all f such that $f(3)=1+f(-5)$ (c) all f such that $f(-1)=0$ (d) all f which are continuous.
(b) Prove that the n rows of an invertible matrix form a basis for R^{n}.
29. (a) State and prove the rank - nullity theorem for linear transformations.
(b) Let $T: R^{3} \rightarrow R^{3}$ defined by $T(x, y, z)=(3 x+z,-2 x+y,-x+2 y+4 z)$. Prove that T is linear. Find the matrix of T in the standard basis for R^{3}.
30. Define $d(X, Y)=\max \left\{\left|x_{1}-x_{2}\right|,\left|y_{1}-y_{2}\right|\right\}$ where $X=\left(x_{1}, y_{1}\right)$ and $Y=\left(x_{2}, y_{2}\right)$. Show that d is metric on R^{2}. Draw the closed sphere of radius one unit and center at the origin.
31. Let X be a metric space and Y be a complete metric space and let A be a dense subspace of X. If f is uniformly continuous mapping of A into Y prove that f can be extended uniquely to a uniformly continuous mapping g from X into Y .
