Reg. No

Name

18P3619

Max. Marks: 75

MSc DEGREE END SEMESTER EXAMINATION - OCTOBER 2018

SEMESTER 3 : PHYSICS

COURSE : 16P3PHYT10 : COMPUTATIONAL PHYSICS

(For Regular - 2017 Admission & Supplementary - 2016 Admission)

Time : Three Hours

Section A Answer any 5 (1 marks each)

1. For operators E and μ

a) $E^2 \mu = 1/\mu$ b) $E\mu = 1/E$ c) $E\mu = \mu E$ d) $E\mu = 1$

2. Using Newton's forward interpolation formula obtain the value of y(1.6) if

x:	1	1.4	1.8	2.2
y:	3.49	4.82	5.96	6.5

- (a) 5.54 (b) 5.45 (c) 5.35 (d) None of the above
- 3. Three point Gaussian Quadrature formula is exact for polynomials up to degree (a) 1 (b) 4 (c) 3 (d) 5
- 4. From the following which one gives the more accurate value
 (a) Modified Euler's method
 (b) Euler's method.
 (c) Both (a) and (b)
 (d) R-K method
- 5. An example of elliptical PDE is(a) Laplace equation (b) heat equation (c) wave equation (d) none of these

(1 x 5 = 5)

Section B Answer any 7 (2 marks each)

- 6. Show that the following relation for operators holds good: $\mu \equiv sqrt(1 + \delta^2/4)$
- 7. Find the missing value of f(x=4) in the following data:

	х	1	2	3	4	5	6	7
ſ	f(x)	2	4	4	?	32	64	128

- 8. Write down the expression for an 1 D integration in terms of Monte Carlo method.
- 9. What are the advantages of Monte Carlo integration over the other usual Numerical integration schemes.
- 10. Graphically explain trapezoidal rule of integration
- 11. What is a pivoting element?
- 12. Graphically explain what happens in modified Euler method way of solving ODE.
- 13. Write down a linear second order PDE of the general form and mention the case when it reduces to an parabolic equation
- 14. Discuss the type of stability conditions involved in explicit way of solving PDE

15. Write a note on weighted average implicit method.

 $(2 \times 7 = 14)$

Section C Answer any 4 (5 marks each)

- 16. Find the cubic polynomial which takes the following values: y(0) = 1, y(1) = 0, y(2)=1 and y(3)=10. And hence obtain the value of y(4)
- 17. Using Newton's forward difference formula find the sum $S_n = 1^3 + 2^3 + 3^3 + \dots + n^3$
- 18. Write down an algorithm to carry out Trapezoidal rule of integration.
- 19. Given dy/dx = $x^2 + y^2$, y(0) =0 using 4th order RK method, estimate y(0.4), take h = 0.2
- 20. Write down the finite difference analogue of the Laplace equation in 2 dimension and arrive at the standard five point formula.
- 21. Given the differential equation $u_t = u_{xx}$ and the boundary conditions u(0,t)=u(5,t)=0 and u(x,0)= $25x^2 x^4$, use the explicit method to obtain the solutions for x_i =ih, h=1, i=0,1,2,...5 and t_j =jk, k=1/2, j=0,1,2,...5

(5 x 4 = 20)

Section D Answer any 3 (12 marks each)

- 22.1. Derive Newton's divided difference formula. Write down the expression for the leading error term observed in this formula.
 OR
 - 2. Discuss Simpson's 3/8 method and error associated with it.
- 23.1. Integrate the function f(x)= 1/x using Romberg's method starting with trapezoidal rule taking h=1,0.5,0.25 and 0.125. Take limits of integration 1 and 2.
 OR
 - 2. Discuss any 2 PC methods.
- 24.1. Discuss 2 methods to obtain the inverse of a matrix. **OR**
 - 2. Obtain the leading error term involved with standard five point formula in solving Laplace equation.

(12 x 3 = 36)