\qquad Name.

B.Sc. DEGREE END SEMESTER EXAMINATION - OCTOBER 2019
 SEMESTER -5: MATHEMATICS (CORE COURSE)
 COURSE: 15U5CRMAT07: ABSTRACT ALGEBRA

(Common for Regular 2017 Admission \& Supplementary/Improvement 2016/2015/2014 Admissions) Time: Three Hours

Max. Marks: 75

PART A

Each Question carries 1 Mark Answer All Questions

1. Show that $(E,+), E$ is the set of all non-negative even integers is a subsemigroup of $(\mathrm{N},+), \mathrm{N}$ is the set of all-natural numbers.
2. Prove that the set $\mathrm{G}=\{0,1,2,3,4,5\}$ is an abelian group under addition modulo 6 .
3. What condition to be satisfied if an algebraic system ($\mathrm{A},+,$.) is called a ring?
4. Obtain the generator of the group $\left(Z_{13},+_{13}\right)$.
5. Prove that a cyclic group of order eight is homorpic to a cyclic group of order four.
6. "Every group of prime order is abelian", True or False, justify.
7. How many homomorphism are there of \mathbb{Z} into \mathbb{Z}_{8} ?
8. Give an example for a non-commutative ring.
9. Define integral domain.
10. Find the characteristics of the rings \mathbb{Z}_{5} and \mathbb{Q}.

PART B

Each Question carries 2 Marks Answer any Eight

11. If G is a finite group of even order then prove that there exists at least one element $a \neq e$ where e is the identity element, such that $a=a^{-1}$.
12. For a cyclic group of order n generated by an element ' a^{\prime}, show that ' n ' is the least positive integer for which $a^{n}=e, e$ is the identity element.
13. Let $f=(14325)$ and $g=(12)(435) \in S_{5}$ find $f o g$ and $g o f$.
14. Define cosets and Lagrange's theorem.
15. Prove that a factor group of a cyclic group is cyclic.
16. Define factor group and alternating group.
17. Define zero divisors and find the zero divisors of \mathbb{Z}_{4}.
18. Using Fermat's theorem, find the remainder of 3^{47} when divided by 23.
19. If R is a ring with unity and N is an ideal of R containing a unit then prove that $N=R$.
20. For a given subrings U_{1} and U_{2} of a ring R , show that their intersection $U_{1} \cap U_{2}$ is also a subring of R.
$(2 \times 8=16)$

PART C

Each Question carries 5 Marks Answer Any Five

21. Prove that every permutation of a finite set is a product of disjoint cycles.
22. Find all subgroups of $\left\langle\mathbb{Z}_{12,},{ }_{12}\right\rangle$.
23. Let $G=\left\{1, a, a^{2}, a^{3}\right\}\left(a^{4}=1\right)$ be a group and $H=\left\{1, a^{2}\right\}$ is a subgroup of G under multiplication. Find all cosets of H .
24. A cyclic group G with generator a is finite if and only if there exist a positive integer k such that $a^{k}=e$.
25. Let G be a finite abelian group of order n , and let ' r ' be a positive integer relatively prime to n , then show that $\phi_{r}: G \rightarrow G$ given by $a \phi_{r}=a^{r}$ is an isomorphism of G onto itself.
26. Show that $Q(\sqrt{7})=\{a+b \sqrt{7} / a, b \in Q\}$ is a field under usual addition and multiplication.
27. If ' p ' is prime prove that \mathbb{Z}_{p} is a field.
$(5 \times 5=25)$

PART D

Each Question carries 12 Marks Answer Any Two

28. Prove that every finite group of order ' n ' is isomorphic to a permutation group of degree' n '.
29. State and prove any necessary and sufficient condition for any subset of a group become a subgroup under the same group operation.
30. State and prove fundamental homomorphism Theorem.
31. (a) Prove that every field is an integral domain.
(b) Prove that a field contains no proper nontrivial ideal.
$(12 \times 2=24)$
