\qquad

B. Sc. DEGREE END SEMESTER EXAMINATION - OCTOBER 2019

SEMESTER -5: MATHEMATICS (CORE COURSE FOR MATHEMATICS AND COMPUTER APPLICATIONS)

COURSE: 15U5CRMAT6-15U5CRCMT6: DIFFERENTIAL EQUATIONS

(Common for Regular 2017 Admission \& Improvement 2016/Supplementary 2016/2015/2014 Admissions)
Time: Three Hours
Max. Marks: 75

PART - A

Answer all questions. Each question carries 1 mark.

1. Find the value of b for which the equation $\left(x y^{2}+b x^{2} y\right) d x+(x+y) x^{2} d y=0$ is exact.
2. Solve the differential equation $y^{\prime}+2 x y=0$.
3. Find an integrating factor for the differential equation $\sin 2 x \frac{d y}{d x}=y+\tan x$
4. Reduce $\frac{d y}{d x}+\frac{x}{1-x^{2}} y=x \sqrt{y}$ to linear form.
5. Write the general solution of $a y^{\prime \prime}+b y^{\prime}+c y=0$ whose characteristic equation has roots $\lambda \pm i \mu$.
6. Solve $y^{\prime \prime}-4 y^{\prime}+4 y=0$.
7. Write the Bessel's equation of order p.
8. Find the singular points of the differential equation $2 x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+(x-5) y=0$.
9. What is the auxiliary equation of Lagrange's linear partial differential equation?
10. Prove that $2 z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$ is the solution of partial differential equation $2 z=x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}$.

$$
(1 \times 10=10)
$$

PART - B

Answer any eight questions. Each question carries 2 marks.
11. Prove that $\mu(x, y)=x$ is an integrating factor of the differential equation $\left(3 x y+y^{2}\right)+\left(x^{2}+x y\right) y^{\prime}=0$.
12. Show that the equation $\left(1+4 x y+2 y^{2}\right) d x+\left(1+4 x y+2 x^{2}\right) d y=0$ is exact and solve it.
13. Convert the equation $x^{3} \frac{d^{3} y}{d x^{3}}+2 x^{2} \frac{d^{2} y}{d x^{2}}+2 y=0$ in to ordinary differential equation with constant co efficient.
14. Solve the equation $x \sin y d x+\left(x^{2}+1\right) \cos y d y=0$.
15. Solve the differential equation
$4 x^{2} \frac{d^{2} y}{d x^{2}}-4 x \frac{d y}{d x}+3 y=0$
16. Prove that $J_{1}(0)=0$
17. Locate and classify the singular points of $\left(x^{4}-2 x^{3}+x^{2}\right) \frac{d^{2} y}{d x^{2}}+2(x-1) \frac{d y}{d x}+x^{2} y=0$
18. Solve $\frac{d x}{x^{2}}=\frac{d y}{y^{2}}=\frac{d z}{(x+y) z}$
19. Form a partial differential equation by eliminating arbitrary function for

$$
z=f(x+i t)+g(x-i t)
$$

20. Write a set of parametric equations of a surface $x^{2}+y^{2}+z^{2}=a^{2}$.

PART-C

Answer any five questions. Each question carries 5 marks.
21. Solve $2 x y \frac{d y}{d x}-y^{2}+x^{2}=0$
22. Given that $y=x$ is a solution of $\left(x^{2}+1\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+2 y=0$ then find a linearly independent solution by reducing the order.
23. Solve the equation $y^{\prime \prime}-2 y^{\prime}-3 y=2 e^{x}-10 \sin x$.
24. Solve $\frac{d^{2} y}{d x^{2}}+4 y=\cos 2 x$
25. Prove that $J_{1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \sin x$
26. Find the integral curves of the equation $\frac{d x}{x\left(y^{2}-z^{2}\right)}=\frac{d y}{y\left(z^{2}+x^{2}\right)}=\frac{d x}{z\left(x^{2}+y^{2}\right)}$.
27. Find power series solutions in powers of x of the differential equation $\frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=0$
$(5 \times 5=25)$

PART - D

Answer any two questions. Each question carries 12 marks.
28. Define an oblique trajectory. Find a family of oblique trajectories that intersect the family of straight lines $y=c x$ at angle 45°.
29. Solve $x^{3} y^{\prime \prime \prime}-4 x^{2} y^{\prime \prime}+8 x y^{\prime}-8 y=4 \ln x$.
30. Use method of Frobenius to find the general solution of the differential equation $2 x^{2} \frac{d^{2} y}{d x^{2}}+\mathrm{x} \frac{d y}{d x}+\left(x^{2}-3\right) y=0$
31. (i) Form a differential equation corresponding to $(x-a)^{2}+(y-b)^{2}+z^{2}=1$.
(ii) Find the general solution of the differential equation $(y+z x) p-(x+y z) q=x^{2}-y^{2}$.
$(12 \times 2=24)$

