\qquad

B. Sc. DEGREE END SEMESTER EXAMINATION - OCTOBER 2019

SEMESTER -5: MATHEMATICS (CORE COURSE FOR MATHEMATICS AND COMPUTER APPLICATION) COURSE: 15U5CRMAT5-15U5CRCMT5, MATHEMATICAL ANALYSIS

(Common for Regular 2017 admission \& Improvement 2016/Supplementary 2016/2015/2014 admission)
Time: Three Hours
Max. Marks: 75

PART A

Answer all questions. Each question carries 1 mark.

1. Define neighborhood of a point.
2. Check whether the set $\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$ is open. Justify your claim.
3. State Bolzano-Weierstrass Theorem for sets.
4. Define bounded set with an example.
5. State Order - Completeness property of Real Numbers.
6. State true or false: A sequence can have more than one limit point. Justify your claim.
7. Find limit inferior and limit superior of the sequence $\left\{\sin \frac{n \pi}{3}\right\}$.
8. State Cauchy's General Principle of convergence.
9. Reduce to a real number: $(1-i)^{4}$.
10. State the binomial formula for complex numbers.

PART B

Answer any eight questions. Each question carries $\mathbf{2}$ marks.

11. Show that every open set is a union of open intervals.
12. Prove: The union of an arbitrary family of open sets is open.
13. Show that the set $S=\left\{1, \frac{1}{2},-\frac{1}{2}, \frac{1}{3},-\frac{1}{3}, \ldots \ldots\right\}$ is neither open nor closed.
14. Check whether the set of natural numbers is bounded above and below. Justify your claims.
15. Find the infimum and supremum of the set $\left\{1+\frac{(-1)^{n}}{n}: n \in \mathbb{N}\right\}$.
16. Show that the sequence $\left\{(-1)^{n}\right\}$ oscillates finitely.
17. Show that if $\lim _{n \rightarrow \infty} a_{n}=l$, then $\lim _{n \rightarrow \infty}\left(a_{1} a_{2} \ldots a_{n}\right)^{1 / n}=l$.
18. Show that for any real number $x, \lim _{n \rightarrow \infty} \frac{x^{n}}{n!}=0$.
19. Locate the numbers $z_{1}+z_{2}$ and $z_{1}-z_{2}$ vectorially when $z_{1}=2 i$ and $z_{2}=2-i$.
20. Define interior and exterior points of a set in complex plane.

PART C

Answer any five questions. Each question carries 5 marks.
21. Prove: A set is closed if and only if its complement is open.
22. Prove: The cartesian product of two countable sets is countable.
23. State and prove: Archimedean property of real numbers.
24. Prove: A monotonic sequence is convergent if and only if it is bounded.
25. State and prove the nested intervals theorem.
26. Show that $\lim _{n \rightarrow \infty} \frac{1}{n}\left[1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right]=0$.
27. Sketch the following sets and determine which are domains:
(a) $|z-2+i| \leq 1$
(b) $|2 z+3|>4$
(c) $\operatorname{Im}(z)>1$
$(5 \times 5=25)$

PART D

Answer any two questions. Each question carries 12 marks.

28. (a) Prove: Every bounded infinite set has the smallest and greatest limit points.
(b) Prove or disprove: The set of real numbers in $[0,1]$ is countable.
29. State the two forms of Completeness Property of real numbers and prove their equivalence.
30. (a) State and prove: Cantor's Intersection theorem for real line.
(b) State and prove: Cauchy's First Theorem on limits.
31. (a) Find the two square roots of $\sqrt{3}+i$.
(b) Find the principal argument of $\frac{i}{-2-2 i}$ and $(\sqrt{3}-i)^{6}$.
$(12 \times 2=24)$
