\qquad Name

B. Sc. DEGREE END SEMESTER EXAMINATION - MARCH/APRIL 2019

SEMESTER - 4: MATHEMATICS (COMPLEMENTARY COURSE FOR PHYSICS AND CHEMISTRY) COURSE: 15U4CPMAT04, FOURIER SERIES, DIFFERENTIAL EQUATIONS, NUMERICAL ANALYSIS

AND ABSTRACT ALGEBRA
(Common for Regular 2017 admission and improvement 2016/supplementary 2016/2015/2014 admission)
Time: Three Hours
Max. Marks: 75

PART A

Answer all questions. Each question carries $\mathbf{1}$ mark.

1. Define Fundamental period.
2. Define Fourier Series of a 2L Periodic function $f(x)$
3. Define Rodriques's formula
4. State Newton Raphson formula
5. State intermediate value property.
6. Form the partial differential equation by eliminating the constants for $z=(x+a)(y+b)$
7. Give the direction ratios of the tangent Line L at a point to the curve of intersection of two surfaces F and G
8. Find solution of the differential equation $p-q=1$
9. Find the order of the cyclic subgroup generated by $3 \in \mathbb{Z}_{18}$
10. Is R a vector space over the field C. Justify?

PART B

Answer any eight questions. Each question carries 2 marks.
11. Find the half range sine series of $f(x)=x, 0<x<1$
12. Find the power series solution of $y^{\prime}=2 x y$
13. Solve the differential equation $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{9}\right) y=0$
14. Three approximate values of the number $\frac{1}{6}$ are given as $0.20,0.16,0.17$. Which of these is the best approximation?
15. Using bisection method find a real root between 2 and 4 of the equation $x^{3}-9 x+1=0$ correct to three decimal places
16. Explain Aitken's Δ^{2}-Process
17. Form the partial differential equation by eliminating function from $z=f\left(\frac{x y}{z}\right)$
18. Obtain the partial differential equation that represent the family of all right circular cones whose axes coincide with positive side of z -axis
19. If $\sigma=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2\end{array}\right)$ and $\mu=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 2 & 4 & 3 & 1 & 6\end{array}\right)$ Find $\mu \sigma^{2}$
20. Show that $\{(1,2,3),(2,3,1),(3,1,2)\}$ is a linearly independent subset of R^{3}

PART C

Answer any five questions. Each question carries 5 marks.

21. Find the Fourier series of $f(x)=x \sin x$ in $[-\pi, \pi]$ with $f(x)=f(x+2 \pi), x \in R$
22. Find the half range sine-series of $f(x)=x(l-x), 0<x<l$
23. Use the method of iteration to determine a real root of the equation $e^{-x}=10 x$, correct to four decimal places
24. Using Newton Raphson Method, find a root of the equation $x \sin x+\cos x=0$
25. Form the partial differential equation by eliminating the arbitrary function from $f\left(x+y+z, x^{2}+y^{2}+z^{2}\right)=0$
26. Solve the equation $y^{2} p-x y q=x(z-2 y)$
27. Prove that set $\{a+b \sqrt{2}: a, b \in Z\}$ is a ring with respect to ordinary addition and ordinary multiplication

PART D

Answer any two questions. Each question carries 12 marks.
28. Find the Fourier series of the function $f(x)=\left\{\begin{array}{cc}x+x^{2} & -\pi<x<\pi \\ \pi^{2} & \text { when } x= \pm \pi\end{array}\right.$, hence deduce that $1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots=\frac{\pi^{2}}{6}$
29. Find the real root of the equation $x^{3}-6 x^{2}+11 x-6=0$ using Quotient Difference method
30. a) Find the integral curves of the equations $\frac{d x}{y+x z}=\frac{d y}{-(x+y z)}=\frac{d z}{x^{2}-y^{2}}$
b) Find the general integral of $p x\left(z-2 y^{2}\right)=(z-q y)\left(z-y^{2}-2 x^{3}\right)$
31. a) Let G be the set of all real numbers $a \neq 1$. Define the operation * on G by $a * b=a+b+$ $a b$ for all $a, b \in G$. Prove that G is an abelian group under the operation *
b) Find all subgroups of \mathbb{Z}_{18} and draw the lattice diagram
$(12 \times 2=24)$

