\qquad

B.Sc. DEGREE END SEMESTER EXAMINATION MARCH/APRIL 2019
 SEMESTER - 4: MATHEMATICS (CORE COURSE FOR MATHEMATICS \& COMPUTER APPLICATION) COURSE: 15U4CRMAT04-15U4CRCMT04, VECTOR CALCULUS, THEORY OF EQUATIONS AND NUMERICAL METHODS

(Common for Regular 2017 admission and improvement 2016/ supplementary 2016/2015/2014 admission) Time: Three Hours

Max. Marks: 75

PART A

Answer all questions. Each question carries 1 mark.

1. Find a vector perpendicular to the plane $3 x+5 y-8 z=0$.
2. Find the volume of the parallelepiped whose edges are $3 \hat{i}+4 \hat{j}, 2 \hat{i}+3 \hat{j}+4 \hat{k}$ and $5 \hat{k}$.
3. Find $\frac{d r}{d t}$ of a particle moving along the curve $r(t)=\operatorname{sint} \stackrel{\mu}{i}+\mathrm{e}^{-t} \stackrel{\mu}{\mathrm{j}}+3 \stackrel{\mu}{\mathrm{k}}$.
4. Evaluate $\int_{C}(x+y) d s$ where C is a straight line $\mathrm{x}=\mathrm{t}, \mathrm{y}=1-\mathrm{t}, \mathrm{z}=0$ from $(0,1,0)$ to $(1,0,0)$.
5. Find the gradient of the field $f(x, y, z)=\left(x^{2}+y^{2}+z^{2}\right)^{\frac{-1}{2}}$.
6. Find the divergence of $f(x, y)=\left(x^{2}-2 y\right) \hat{i}+\left(x y-y^{2}\right) \hat{j}$.
7. Form a polynomial equation of second degree with rational coefficients, one of whose roots are $\sqrt{2}+\sqrt{-3}$.
8. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are the roots of the equation $4 x^{3}-2 x^{2}+8 x+5=0$, then find $\mathrm{ab}+\mathrm{bc}+\mathrm{ac}$.
9. Write Newton-Raphson formula to find an approximate solution of an equation.
10. If $f(a) \cdot f(b)<0$, then a root of $f(x)=0$ lies between \qquad and \qquad

PART B

Answer any eight questions. Each question carries 2 marks.
11. Find the angle between the planes $x+y+z=1$ and $x+2 y+3 z=6$.
12. A particle moves along the curve $x=3 t^{2}, y=t^{2}-2 t, z=t^{3}$. Find velocity and acceleration.
13. Find the arc length parameter along the helix $r(t)=\cos t i v+\sin t j+t \hat{k}$ from $\mathrm{t}_{0}=0$ to t .
14. Find the total work done in moving a particle in a force field given by $F=3 x y \underset{i}{\mu}-5 z, j+10 x k$ along the curve $x=t^{2}+1, y=2 t^{2}, z=t^{3}$ from $\mathrm{t}=0$ to $\mathrm{t}=1$.
15. Evaluate $\oint_{C} x y d y-y^{2} d x$, where C is the square cut from the first quadrant by the lines $x=1$ and $y=1$, using green's theorem.
16. If $F=-2 y i+2 x j$, evaluate $\int_{C} F . d r$ where C is a circle of radius a about the origin bounding a disk S in the x-y plane using Stoke's theorem.
17. Solve the equation $4 x^{3}-24 x^{2}+23 x+18=0$, given that the roots are in arithmetic progression.
18. Form an equation whose roots are 2 times those of the equation $2 x^{3}-5 x^{2}+7=0$.
19. Find an approximate real root of the equation $x e^{x}=1$ in four steps using bisection method, given that a root lies between 0 and 1 .
20. Use Newton Raphson Method to find an approximate root of $x^{3}-2 x-5=0$ near $x_{0}=2$ in two steps.
($2 \times 8=16$)

PART C

Answer any five questions. Each question carries 5 marks.

21. Find the unit tangent vector \mathbf{T} and unit normal \mathbf{N} for $r(t)=3 \cos t i+3 \sin t \hat{j}+4 t \hat{k}$.
22. Find the tangential and normal component of acceleration for the curve $r(t)=(\cos t+t \sin t) \hat{i}+(\sin t-t \cos t) \stackrel{\mu}{j}$.
23. Show that $2 x d x+2 y d y+2 z d z$ is exact and evaluate $\int_{(0,0,0)}^{(2,3,-6)} 2 x d x+2 y d y+2 z d z$.
24. Find the area of surface cut from the bottom of the paraboloid $x^{2}+y^{2}-z=0$ by the plane $z=4$
25. Solve $24 x^{3}-14 x^{2}-63 x+45$ given that one root is double another.
26. Solve the equation $60 x^{4}-736 x^{3}+1433 x^{3}-736 x+60=0$.
27. Find the real solution of $x^{4}=3$ by Regula falsi method in five steps.

PART D

Answer any two questions. Each question carries 12 marks.
28. Evaluate $\int_{C} F$. $d r$ if $F=\left(x^{2}+y^{2}\right) i-2 x y j$ where C is the rectangle in the $x-y$ plane bounded by $x=0, x=a, y=0, y=b$.
29. Verify Green's theorem in the plane $\oint_{C} x y d x+x^{2} d y$ where C is the curve enclosing the region bounded by parabola $y=x^{2}$ and the line $y=x$.
30. Solve $x^{3}-9 x+28=0$ by Cardan's method.
31. a) Find an approximate root of $x=e^{-x}$ using Newton Raphson method upto 4 steps starting from $x_{0}=1$.
b) Find an approximate solution to the equation $x^{3}+x-1=0$ starting from $x_{0}=1$ using fixed point iteration formula in 3 steps.

