Q. Code: \qquad Reg. No:

Name: \qquad

B SC DEGREE END SEMESTER EXAMINATION MARCH 2019

SEMESTER - 2: MATHEMATICS (COMPLEMENTARY COURSE FOR PHYSICS \& CHEMSITRY)

COURSE CODE : 15U2CPMAT2 : INTEGRAL CALCULUS AND MATRICES

Time: Three Hours

Max. Marks:75

Part A
Answer all Questions
Each Question Carries 1 mark

1. Find the area under the curve $y=x$ from $x=1$ to $x=2$.
2. Find $\int_{-\frac{\pi}{4}}^{0} \sec x \tan x d x$
3. Use the Substitution Formula to evaluate $\int_{-1}^{1} \frac{5 r}{\left(4+r^{2}\right)^{2}} d r$.
4. Write the formula to find the surface area generated by revolving a curve $f(x)$ about X-axis.
5. State Fubini's Theorem.
6. Find the average value of $f(x, y)=x \cos (x y)$ over the rectangle $R: 0 \leq x \leq \pi$ and $0 \leq y \leq 1$.
7. State Cayley Hamilton Theorem.
8. What is the rank of the matrix $\left[\begin{array}{cc}-1 & -1 \\ -1 & -1\end{array}\right]$?
9. What is a homogeneous equation. Give an example.
10. Define the term singular matrix.

Part B

Answer Any Eight Each Question Carries 2 marks
11. Find the average value of $f(t)=t^{2}-t$ on $[-2,1]$.
12. Find $\quad \frac{d y}{d x}$, when $y=\int_{\sqrt{x}}^{0} \sin \left(t^{2}\right) d t$.
13. Find the length of the curve $x=1-t, y=2+3 t,-2 / 3 \leq t \leq 1$.
14. Find the volume of the solid generated by revolving the region between $y=x^{2}$ and $y=0$ about the X-axis between $x=0$ and $x=2$.
15. Find the area of the region enclosed by the curves $x=2 y^{2}, x=0$ and $y=3$.
16. Integrate $f(x, y)=x / y$ over the region in the first quadrant bounded by the lines $y=x, y=2 x, x=$ $1, x=2$.
17. Change

$$
\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{ } 1-x^{2}} d y d x \text { to a polar integral and evaluate. }
$$

18. Use double integration to find the area of the region bounded by the coordinate axes and the line $x+y=2$.
19. Find all the solutions of the following system of 2 equations:

$$
\begin{array}{r}
x+y+z=4 \\
2 x+5 y-2 z=3
\end{array}
$$

20. Use Cramer's rule to solve the system of equations

$$
\begin{align*}
2 x-7 y & =12 \\
-4 x+5 y & =-6
\end{align*}
$$

Part C

Answer Any Five Each Question Carries 5 marks
21. State the Max-Min Inequality in integration. Show that the value of $\int_{0}^{1} \sin \left(x^{2}\right) d x$ cannot possibly by 2 .
22. Find the total area of the region between the X-axis and the curve $f(x)=-x^{2}-2 x$, where $-3 \leq x \leq 2$.
23. Apply the parametric formula to find the length of the astroid $x^{2 / 3}+y^{2 / 3}=1$.
24. Reverse the order of integration, and evaluate the integral. $\int_{0}^{\pi} \int_{x}^{\pi} \frac{\sin y}{y} d y d x$.

$$
\mathrm{Z}_{1} \mathrm{Z}_{2-x \mathrm{X}}^{2-x-y}
$$

25. Evaluate $d z d y d x$.

$$
\begin{array}{lll}
0 & 0 & 0
\end{array}
$$

26. Solve the following system of equations using Matrix inversion method

$$
\begin{aligned}
2 x+3 y+z & =9 \\
x+2 y+3 z & =6 \\
3 x+y+2 z & =8
\end{aligned}
$$

27. Using the elementary row transformations, find the rank of the matrix. $\left[\begin{array}{cccc}1 & 2 & -1 & 4 \\ 2 & 4 & 3 & 5 \\ -1 & -2 & 6 & -7\end{array}\right]$

Part D

Answer Any Two Each Question Carries 12 marks
28. State the Fundamental Theorem of Calculus. Find a function $y=f(x)$ in the domain $(-\pi / 2, \pi / 2)$ with $d x-{ }^{d y}=\tan x$ and $f(3)=5$.
29. Find the volume of the region D enclosed by the surfaces $z=x^{2}+3 y^{2}$ and $z=8-x^{2}-y^{2}$.
30. Find the volume of the prism whose base is the triangle in the $X Y$-plane bounded by the X axis an the lines $y=x$ and $x=1$ and whose top lies in the plane $z=f(x, y)=3-x-y$.
31. Determine the characteristic roots and associated invariant vectors of $\left[\begin{array}{ccc}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right]$
$(2 \times 12=24)$

