B.Sc. DEGREE END SEMESTER EXAMINATION MARCH/APRIL 2019

SEMESTER - 2: MATHEMATICS (CORE COURSE FOR MAT̈HEMATICS AND COMPUTER APPLICATIONS)

 COURSE: 15U2CRMAT2/15U2CRCMT2- ANALYTIC GEOMETRY, TRIGONOMETRY AND MATRICES(Common for Regular 2018/Supplementary-improvement 2017/2016/2015 /2014 Admission)

PART A
Answer all questions.
Each question carries 1 mark.

1. Define orthoptic locus.
2. What is the equation of the chord joining the points t_{1} and t_{2} on the parabola $y^{2}=4 a x$?
3. Define Conjugate Diameters of an ellipse.
4. What is the equation of the polar of $\left(x_{1}, y_{1}\right)$ with respect to the conic $y^{2}=8 x$?
5. The polar coordinates of a point is $(5, \pi / 6)$. Write its Cartesian coordinates.
6. Define hyperbolic sine of x
7. Separate $\sin (\alpha+i \beta)$ into real and imaginary parts.
8. When x is real, what is the period of $\tan x$?
9. What is the rank of a non-singular matrix of order $n \times n$.
10. What is the inverse of the elementary transformation $H_{21}(-2)$.
$(10 \times 1=10)$
PART B
Answer any eight questions.
Each question carries 2 marks.
11. Find the pole of the line $l x+m y+n=0$ with respect to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.
12. Find the condition for the line $y=m x+c$ to be a tangent to the parabola $y^{2}=4 a x$ and also determine the point of contact.
13. Find the equation of the asymptotes to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.
14. Find the equation of the tangent to the conic $\frac{l}{r}=1+e \cos \theta$ at a point whose vertical angle is α.
15. Prove that $\cosh ^{2} x=1+\sinh ^{2} x$
16. Separate inte real and imaginary parts the expression $\tan (\alpha+i \beta)$.
17. If $\log (\alpha+i \beta)=x+i y$, find x.
18. Find the normal form of the matrix $\left[\begin{array}{cccc}1 & 2 & -1 & 4 \\ 2 & 4 & 3 & 5 \\ -1 & -2 & 6 & -7\end{array}\right]$
19. Find the eign values of the matrix $\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right]$
20. Give the definition of elementary matrix. Find the elementary matrix $H_{23}(4)$ obtained from I_{3}.

PART C

Answer any five questions.
Each question carries 5 marks.
21. If the chord joining two points whose eccentric angles are α and β on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ cut the major axis at a distance d from the centre, show that $\tan \frac{\alpha}{2} \tan \frac{\beta}{2}=\frac{d-a}{d+a}$.
22. Find the equation of the pair of tangents from $\left(x_{1}, y_{1}\right)$ to the parabola $y^{2}=4 a x$.
23. Find the condition that the line $\frac{l}{r}=A \cos \theta+B \sin \theta$ may be a tangent to the conic $\frac{l}{r}=$ $I+e \cos \theta$.
24. If $\sin (\theta+i \ddot{\phi})=r(\cos \alpha+i \sin \alpha)$, prove that $r^{2}=\frac{1}{2}(\cosh 2 \phi-\cos 2 \theta)$.
25. Find the sum of the series to the infinity. $\cos x \sin x+\frac{1}{2!} \cos ^{2} x \sin 2 x+\frac{1}{3!} \cos ^{3} x \sin 3 x+\ldots$.
26. Use Cramer's rule to solve the system of linear equations.

$$
\begin{aligned}
x+z & =-1 \\
-2 x+y & =1 \\
-y+z & =5
\end{aligned}
$$

27. Form augmented matrix and solve the system of equations

$$
\begin{array}{r}
x+y+z=9 \\
2 x+5 y+7 z=52 \\
2 x+y-z=0
\end{array}
$$

PART D

Answer any two questions.
Each question carries 12 marks.
28. (a) Show that the line $l x+m y+n=0$ is a normal to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, if $\frac{a^{2}}{l^{2}}+\frac{b^{2}}{m^{2}}=$ $\frac{\left(a^{2}-b^{2}\right)^{2}}{n^{2}}$.
(b) Show that the locus of the poles of normal chords of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is the curve $y^{2} a^{6}-x^{2} b^{6}=\left(a^{2}+b^{2}\right)^{2} x^{2} y^{2}$.
29. A circle passing through the focus of a conic, whose latus rectum is $2 l$, meets the conic in four points whose distances from the focus are $r_{1}, r_{2}, r_{3}, r_{4}$. Prove that $\frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{r_{3}}+\frac{1}{r_{4}}=\frac{2}{l}$.
30. (a) Factorise $x^{7}-1$ into real factors
(b) Sum the series $\cosh \alpha-\frac{1}{2} \cosh 2 \alpha+\frac{1}{3} \cosh 3 \alpha \ldots$ to ∞.
31. State Cayley-Hamilton Theorem. Use the theorem to compute A^{3} and A^{4} of the matrix $A=\left[\begin{array}{lll}1 & 1 & 2 \\ 3 & 1 & 1 \\ 2 & 3 & 1\end{array}\right]$.

