B. Sc. DEGREE END SEMESTER EXAMINATION - OCTOBER 2019

SEMESTER - 1: MATHEMATICS (COMPLEMENTARY COURSE FOR PHYSICS/CHEMISTRY)
COURSE: 15U1CPMAT1: DIFFERENTIAL CALCULUS AND TRIGONOMETRY
(Common for Improvement 2018/ Supplementary 2018/2017/2016 /2015/2014 admission)

Abstract

Time: Three Hours

Max. Marks: 75

PART A (Short Answer Questions)

Answer all questions. Each question carries 1 mark.

1. What is the value of $\lim _{x \rightarrow-1} 3(2 x-1)^{2}$?
2. State Sandwich theorem.
3. Find the derivative of $y=x^{2} \sin x$.
4. The absolute maximum value of $f(x)=x^{2}$ on $[-2,1]$ is \qquad .
5. State Mean Value Theorem.
6. Find $\frac{\partial f}{\partial y}$ if $f(x, y)=y \sin x y$.
7. State the chain rule for functions of two independent variables.
8. Define hyperbolic sine of x.
9. Prove that $\cosh ^{2} x-\sinh ^{2} x=1$.
10. Separate into real and imaginary parts $\sin (x+i y)$.

PART B (Brief Answer Questions)

Answer any eight questions. Each question carries $\mathbf{2}$ marks.
11. Evaluate $\lim _{x \rightarrow 1} \frac{x^{2}+x-2}{x^{2}-x}$.
12. Find the first and second derivatives of $s=-2 t^{-1}+\frac{4}{t^{2}}$.
13. State the first derivative theorem for local extreme values.
14. Find the value or values of c which satisfies the mean value theorem for the function $f(x)=x^{2}+2 x-1$ in the interval $[0,1]$.
15. Find the extreme value of the function $y=x^{3}-2 x+4$ and find where they occur.
16. Determine f_{x} and f_{y} if $\mathrm{f}(\mathrm{x}, \mathrm{y})=\frac{2 y}{y+\cos x}$.
17. Show that $f(x, y)=e^{-2 y} \cos 2 x$ satisfies Laplace's equation.
18. Using chain rule find the derivative of $w=x y$ with respect to ' t ' along the path $x=\cos t$, $y=\sin t$.
19. Prove that $\cos 4 \theta=\cos ^{4} \theta-6 \sin ^{2} \theta \cos ^{2} \theta+\sin ^{4} \theta$.
20. If $\mathrm{u}=\log \tan \left(\frac{\pi}{4}+\frac{\theta}{2}\right)$, Prove that $\tanh \frac{u}{2}=\tan \frac{\theta}{2}$.

PART C (Short Essay Type Questions)

Answer any five questions. Each question carries 5 marks.
21. Calculate the derivative of the function $f(x)=4-x^{2}$ using the definition.
22. Find $\frac{d}{d t}(\tan (5-\sin 2 t))$ using chain rule.
23. Using the first derivative test for monotonic functions find the critical points of $f(x)=x^{3}-12 x-5$ and identify the intervals on which f is increasing and decreasing.
24. Verify $w_{x y}=w_{y x}$: Given $w=x \sin y+y \sin x+x y$.
25. Evaluate $\frac{\partial w}{\partial u}$ and $\frac{\partial w}{\partial v}$ at $(u, v)=(1 / 2,1)$, given $w=x y+y z+x z, x=u+v, y=u-v, z=u v$.
26. Show that $\cos (\alpha+i \beta)+i \sin (\alpha+i \beta)=e^{-\beta}(\cos \alpha+i \sin \alpha)$.
27. Prove that $\sinh ^{-1} x=\log \left(x+\sqrt{x^{2}+1}\right)$.

PART D (Essay)

Answer any two questions. Each question carries $\mathbf{1 2}$ marks.
28. (a) Evaluate $\lim _{x \rightarrow 1} \frac{x-1}{\sqrt{x+3}-2}$
(b) Find the slope of the circle $x^{2}+y^{2}=25$ at the point $(3,-4)$.
29. Consider the function f whose derivative is given by $f^{\prime}(x)=(x-1)(x+2)(x-3)$
(a) what are the critical points of f?
(b) On what interval is f increasing or decreasing?
(c) At what points, if any, does f assume local maximum and minimum values?
30. (i) The plane $x=1$ intersects the paraboloid $z=x^{2}+y^{2}$ in a parabola. Find the slope of the tangent to the parabola at $(1,2,5)$.
(ii) State the mixed derivative theorem.
(iii) Find $\frac{d y}{d x}$ if $x y+y^{2}-3 x-3=0$ at $(-1,1)$
31. Sum to infinity the series $\mathrm{c} \sin \alpha+\frac{1}{2} \mathrm{c}^{2} \sin 2 \alpha+\frac{1}{3} \mathrm{c}^{3} \sin 3 \alpha+\ldots$
$(12 \times 2=24)$

