\qquad
\qquad

MSc DEGREE END SEMESTER EXAMINATION - MARCH/APRIL 2019
 SEMESTER 4 : MATHEMATICS

COURSE : 16P4MATT20EL : NUMERICAL ANALYSIS
(For Regular - 2017 Admission and Supplementary - 2016 Admission)

Time : Three Hours
Max. Marks: 75

Section A
 Answer all the following (1.5 marks each)

1. Evaluate the sum $S=\sqrt{3}+\sqrt{5}+\sqrt{7}$ to 4 significant digits and find its absolute and relative error.
2. State Taylor's series and Maclaurin's series for a function.
3. Find the relative error of the number 9.6 if both of its digits are correct.
4. Define ill-conditioned matrix.
5. Establish whether the following matrix is singular, ill conditioned or well conditioned
$\left[\begin{array}{ccc}1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9.1\end{array}\right]$.
6. Show that $e^{x}\left(u_{0}+x \Delta u_{0}+\left(x^{2} / 2!\right) \Delta^{2} u_{0}+\ldots\right)=u_{0}+u_{1} x+u_{2}\left(x^{2} / 2!\right)+\ldots$
7. Define $\left[x_{o}, x_{1}, x_{2}\right]$
8. Evaluate $\Delta(x+1)(x+2)$
9. Evaluate $\Delta\left(\tan ^{-1} x\right)$.
10. From the Taylor series for $\mathrm{y}(\mathrm{x})$, find $\mathrm{y}(0.1)$ if the function satisfies $y^{\prime}=x-y^{2}$ and $y(0)=1$.
$(1.5 \times 10=15)$

Section B

Answer any 4 (5 marks each)
11. Briefly explain Newton - Raphson method and using it find the root of the equation $x=e^{-x}$
12. Use the method of iteration to find a real root of the equation $x^{3}+x^{2}-1=0$ on the interval $[0,1]$ with an accuracy of 10^{-4}.
13. Discuss the method of Tridiagonal system.
14. Using Newton's difference formula. Find the sum $S_{n}=1^{3}+2^{3}+\ldots+n^{3}$
15. Applying Lagrange's formula, find a cubic polynomial which approximates the following data:

x	-2	-1	2	3

$F(x)$| -12 | -8 | 3 | 5 |
| :--- | :--- | :--- | :--- |

16. Determine the value of y when $\mathrm{x}=0.1$ given that $\mathrm{y}(0)=1$ and $y^{\prime}=x^{2}+y$ using modified Euler's method with $\mathrm{h}=0.05$.

Section C Answer any 4 (10 marks each)

17.1. a) Let $x=\epsilon$ be a root of $\mathrm{f}(\mathrm{x})=0$ and let I be the interval containing the point $x=\epsilon$. Let $\phi(x)$ and $\phi^{\prime}(x)$ be continuous in I where $x=\phi(x)$ is equivalent to $f(x)=0$. Then if $\left|\phi^{\prime}(x)\right|<1$ for all x in I , the sequence of approximatons $x_{0}, x_{1}, \ldots x_{n} x_{0}$ defined by $x_{n+1}=\phi\left(x_{n}\right)$ converges to the root ϵ, provided the initial approximation is chosen in I. b) Find a root of the equation $\sin x=1-x$ using Ramanujan's method.

OR

2. Desribe Gauss Jordan method and solve the equations $5 x-2 y+z=4,7 x+y-5 z=8$, $3 x+7 y+4 z=10$.
18.1. Explain the method to solve Linear systems using iterative methods.

OR
2. Explain the errors in Numerical differentiation and hence find the error obtained in first and second derivative at $x=1.6$, for the function which fits the data : (1, $2.7183),(1.2,3.3201),(1.4,4.0552),(1.6,4.9530),(1.8,6.0496),(2,7.3891),(2.2$, 9.0250).
19.1. Derive Newton's general interpolation formula with divided differences.

OR
2. Solve the initial value problem $y^{\prime}=3 x+y / 2$ with the condition $y(0)=1$. Find $y(0.2)$ and $\mathrm{h}=0.05$.
20.1. Use Runge - Kutta method to solve $10 y^{\prime}=x^{2}+y^{2}, \mathrm{y}(0)=1$, for the interval $0<x \leq 0.4$ with $\mathrm{h}=0.1$.

OR
2. Derive the predictor - corrector formula using Newton's backward and forward difference interpolation formula.

