Reg.	No		0																	
			•	•	٠	•	٠	•	٠	٠	٠	•	٠	•	٠	•	٠	•	•	•

Name

19P4040

MSc DEGREE END SEMESTER EXAMINATION - MARCH/APRIL 2019 SEMESTER 4: MATHEMATICS

COURSE: 16P4MATT19EL: THEORY OF WAVELETS

(For Regular - 2017 Admission and Supplementary 2016 Admission)

Time: Three Hours

Max. Marks: 75

Section A

Answer all the following (1.5 marks each)

- 1. Prove that $\hat{z}(m) = \sqrt{N} < z, E_m > ; 0 \leq m \leq N-1$.
- 2. If $B=\{R_{2k}v\}_{k=0}^{M-1}\bigcup\{R_{2k}u\}_{k=0}^{M-1}$ is a first stage wavelet basis for $l^2(Z_N)$, then represent the construction of $[z]_B$ for any $z\in l^2(Z_N)$ by a filter bank diagram.
- 3. Describe the analysis phase and synthesis phase of a filter bank using diagram.
- 4. Prove that the sum of the number of components of all output vectors of the analysis phase of the p^{th} stage filter bank = N.
- 5. If N is divisible by 2^p , with the usual notations define f_l,g_l for $l=1,2,3,\ldots,p$.
- 6. If $\psi_{-j,k}=R_{2^jk}\,f_j$ and $\phi_{-j,k}=R_{2^jk}\,g_j$, prove that $\psi_{-j,0}=f_j$ and $\phi_{-j,0}=g_j$.
- 7. Define the absolute convergence of $\sum_{n \in Z} w(n)$.
- 8. When we say a complex valued function f defined on $[-\pi,\pi)$ is square integrable over $[-\pi,\pi)$?.
- 9. Define the down sampling operator $D: l^2(Z) \to l^2(Z)$ and the upsampling operator $U: l^2(Z) \to l^2(Z)$.
- 10. If $z=(z(n))_{n\in Z}\in l^2(Z)$, prove that DoU(z)=z.

 $(1.5 \times 10 = 15)$

Section B

Answer any 4 (5 marks each)

- 11. (a) If $z=(z(0),z(1),\ldots,z(N-1))\in l^2(Z_N)$, what is \overline{z} ? Prove that $(\overline{z})^\wedge(m)=\overline{\hat{z}(N-m)}:0\leq m\leq N-1$
- 12. Suppose $z,w\in l^2(Z_N)$. Prove that
 - (i) $(z*w)= ilde{z}* ilde{w}$.
 - (ii) $[D(z)]^\sim = D(ilde{z})$, if N is even and
 - (iii) $[U(z)]^\sim = U(ilde{z})$
- 13. Suppose N is divisible by 2^p . Suppose $u_1,v_1,\in l^2(Z_N)$ are such that the system matrix A(n) of u_1 and v_1 is unitary for all n.

Define
$$u_l(n)=\Sigma_{k=0}^{2^{l-1}-1}u_1(n+rac{kN}{2^{l-1}})$$
 and $v_l(n)=\Sigma_{k=0}^{2^{l-1}-1}v_1(n+rac{kN}{2^{l-1}})$ for

 $l=2,3,\ldots,p$. If we define $f_1=v_1$ and $g_1=u_1$ and for $l=2,3,\ldots,p$ if we define $f_l=g_{l-1}*U^{l-1}(v_l)$ and $g_l=g_{l-1}*U^{l-1}(u_l)$,

Then prove that U_1 , V_1 , U_2 , V_2 U_p , V_p is a P^{th} stage wavelet filter sequence.

- 14. i) When we say $\{z_k\}_{k=M}^\infty(M\in Z)$ is a Cauchy sequence in $l^2(Z)$?
 - ii) Prove that $l^2(Z)$ is Complete.
- 15. Suppose $u_1v\in l^1(z)$ are such that $[R_{2k}v]_{k\in z}\cup [R_{2k}u]_{k\in z}$ is a first stage wavelet system for $l^2(z)$. Suppose also that $u(n)=v(n)=0 \forall n<0$ and n>N-1. Define $u_{(N)},v_{(N)}\in l^2(Z_N)$ by $u_{(N)}(n)=u(n)$ and $v_{(N)}(n)=v(n)$ for $n=0,1,\cdots N-1$. Then prove that $[R_{2k}v_{(N)}]_{K=0}^{M-1}\cup [R_{2k}u_{(N)}]_{K=0}^{M-1}$ is a first stage wavelet basis for $l^2(z_n)$.
- 16. (i) Let $w\in l^2(Z)$. Then prove that $\{R_{2k}w\}_{k\in Z}$ is orthonormal if and only if <w, R_{2k}w> = 1 if k = 0

< w, $R_{2k}w > = 0$ if $k \ne 0$

for all $k \in Z$.

- (ii) Suppose $z,w\in l^2(Z)$. Prove that
- (a) U(z * w) = U(z) * U(w).
- (b) $[U(z)]^{\sim}=U(ilde{z}).$
- (c) $(z*w)^{\sim} = \tilde{z}*\tilde{w}$.

 $(5 \times 4 = 20)$

Section C Answer any 4 (10 marks each)

- 17.1. (a) When we say a linear transformation $T:l^2(Z_N) o l^2(Z_N)$ is translation invariant?
 - (b) Let $T:l^2(Z_N)\to l^2(Z_N)$ be a translation invariant linear transformation. Then prove that each element of the Fourier basis F is an eigen vector of T.

OR

- 2. (a) Suppose $z,w\in l^2(Z_N)$. Then prove that for each m, $(z*w)^\wedge(m)=\hat{z}(m)\,\hat{w}(m)$
 - (b) Let z=(1,0,1,0) and w=(0,1,0,1) be two elements of $l^2(Z_4)$. Find z*w.
 - (c) Find $(z*w)^{\wedge}$
 - (d) Find \hat{z} and \hat{w} and verify $(z*w)^{\wedge}(m)=\hat{z}(m)\hat{w}(m)$ for m=0,1,2,3.
- 18.1. Suppose N is divisible by 2^p , $z\in l^2(Z_N)$ and $u_1,v_1,u_2,v_2,\dots,u_p,v_p$ are such that $u_l,v_l,\in l^2(Z_{N/2}^{l-1})$ for l=1,2,...,p
 - (a) Define $x_1, x_2, \ldots, x_p, y_1, y_2, \ldots, y_p$
 - (b) Define $f_1, f_2, \ldots, f_p, g_1, g_2, \ldots, g_p$
 - (c) For $l=1,2,\ldots,p$, prove that

$$x_l = D^l(z * ilde{f}_l)$$
 and $y_l = D^l(z * ilde{g}_l)$

OR

2. Describe real shannon wavelet system.

19.1. .(i) Suppose H is a Hilbert Space, $\{a_j\}_{j\in Z}$ is an orthonormal set in H and $z\in l^2(Z)$. Then prove that the series $\sum\limits_{i\in Z}z(j)a_j$ converges in H and

$$||\sum_{j\in Z}z(j)a_j||^2=\sum_{j\in Z}|z(j)|^2.$$

(ii). Suppose H is a Hilbert space, $\{a_j\}_{j\in Z}$ is an orthonormal set in H and $f\in H$. Then prove that $\{< f, a_j >\}_{j\in Z} \in l^2(Z)$ and $\sum\limits_{j\in Z} |< f, a_j >|^2 \leq ||f||^2$.

OR

- 2. Suppose $f:[-\pi,\pi) \to C$ is both continuous and bounded, say $|f(\theta)| \leq M$ for all θ . If $< f, e^{in\theta}> = 0$ for all $n \in Z$, prove that $f(\theta)$ =0 for all $\theta \in [-\pi,\pi)$.
- 20.1. (i) For $k\in Z$, define the translation operator $R_k:l^2(Z)\to l^2(Z)$. (ii) When we say a linear transformation $T:l^2(Z)\to l^2(Z)$ is translation invariant?
 - (iii) Suppose $T:l^2(Z)\to l^2(Z)$ is a bounded translation invariant linear transformation. If we define $b\in l^2(Z)$ by $b=T(\delta)$, then prove that T(z)=b*z for all $z\in l^2(Z)$.

OR

Suppose $u_l,v_l\in l^1(Z)$ for each $l\in N$ and the system matrix $A_l(\theta)$ is unitary for all $\theta\in [0,\pi)$. Define $f_1=u_1,g_1=u_1$ and for $l\in N,l\geq 2$, define $f_l=g_{l-1}*U^{l-1}(v_l)$ and $g_l=g_{l-1}*U^{l-1}(u_l)$. If we define V_{-l} for $l\in N$ as $V_l=[\sum\limits_{k\in Z}z(k)R_{2^lk}g_l:z=(z(k))_{k\in Z}\in l^2(Z)]$ and if $\bigcap\limits_{l\in N}V_{-l}=\{0\}$, prove that $B=\{R_{2^lk}f_l:k\in Z,l\in N\}$ is a complete orthonormal set in $l^2(Z)$.

 $(10 \times 4 = 40)$