\qquad Name \qquad

MSc DEGREE END SEMESTER EXAMINATION - MARCH/APRIL 2019

SEMESTER 4 : MATHEMATICS
COURSE : 16P4MATT17EL : MULTIVARIATE CALCULUS AND INTEGRAL TRANSFORMS
(For Regular - 2017 Admission and Supplementary 2016 Admission)

Time : Three Hours
Max. Marks: 75

Section A

Answer all the following (1.5 marks each)

1. Define Integral transforms
2. Find the Laplace transform of $\sin (a t)$
3. Find the Laplace transform of coshat
4. Show that total derivative of a linear function is the function itself.
5. If $f(x)=\left\|x^{2}\right\|$ then find $f^{\prime}(c ; u)$.
6. Let $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be a function given by $f(t)=(\cos t, \sin t)$. Show that the ordinary Mean Value theorem does not hold in $[0,2 \pi]$.
7. Let $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be defined by $f(t)=(\cos t, \sin t)$ and $f^{\prime}(t)(u)=u(-\sin t, \cos t)$.
Show that for every vector $a \in \exists^{\mathfrak{\prime}} z^{\prime} \in(0,2 \pi)$ such that
a. $\{f(y)-f(x)\}=a .\left\{f^{\prime}(z)(y-x)\right\}$.
8. Show by an example that f need not be one-one on S even when $J_{f}(x) \neq 0 \forall x \in S$.
9. Write any three elementary properties of k-forms
10. Define the term primitive mapping

Section B

Answer any 4 (5 marks each)

11. Show that convolution may not be defined if f and g are Lebesque integrable
12. Prove that $\cos x=\frac{8}{\pi} \sum_{n=1}^{\infty} \frac{n \sin 2 n x}{4 n^{2}-1}$ if $0 \leq x \leq \pi$.
13. Compute the gradient vector $\nabla f(x, y)$ at those points (x, y) in R^{2} where it exists.
a) $f(x, y)=x^{2} y^{2} \log \left(x^{2}+y^{2}\right.$ if $\left.x, y\right) \neq(0,0), f(0,0)=0$
b) $f(x, y)=x y \sin \frac{1}{x^{2}+y^{2}} i f(x, y) \neq(0,0), f(0,0)=0$
14. State and prove the Mean value theorem
15. Show that the rectangular solid of maximum volume that can be inscribed in a given sphere is a cube
16. Suppose $w=\sum_{I} b_{I}(x) d x_{I}$ is the standared representationof a $k-$ form w in an open set $E \in R^{n}$. If $w=0$ in E, then prove that $b_{I}(x)=0$ for every increasing $k-$ index I and for every $x \in E$
(5 x $4=20$)

Section C

Answer any 4 (10 marks each)

17.1. State and prove the convolution theorem for Fourier Transforms

OR

2. Find the Fourier transform of $f(x)=\begin{array}{cl}1-x^{2} & \text { when }|x|<1 \\ 0 & \text { when }|x|>1\end{array}$ Use it to evaluate $\int_{0}^{\infty} \frac{x \cos x-\sin x}{x^{3}} \cos \frac{x}{2} d x$
18.1. Let u and v be-two real-valued functions defined on a subset S of the complex plane. Assume also that u and v are differentiable at an interior point c of S and that the partial derivatives satisfy the Cauchy-Riemann equations at c.Then show that the function $f=u+i v$ has a derivative at c. Moreover, $f^{\prime}(c)=D_{1} u(c)+i D_{1} v(c)$.

OR
2. a)Derive the matrix form of Chain rule
b)Compute the gradient vector $\nabla f(x, y)$ at those points (x, y) in R^{2} where it exists
$f(x, y)=x y \sin \frac{1}{x^{2}+y^{2}} i f(x, y) \neq(0,0), f(0,0)=0$
19.1. (a) State and prove second derivative test for extrema.
(b)Find and classify the extremum values of the function
$f(x, y)=x^{2}+y^{2}+x+y+x y$.
OR
2. Let $B=B(a ; r)$ be an n -ball in R^{n}, let δB denote its boundary, $\delta B=x:\|x-a\|=r$, and let $B=B U \delta B$ denote its closure. Let $f=\left(f_{1}, \ldots, f_{n}\right)$ be continuous on B , and assume that all the partial derivatives $D j f_{i}(x)$ exist if $x \in B$. Assume further that $f(x) \neq f(a)$ if $x \in \partial B$ and that the Jacobian determinant $J_{f}(x) \neq 0$ for each x in B. Then prove that $f(B)$, the image of B under f , contains an n -ball with center at $f(a)$
20.1. Suppose E is an open set in R^{n}, T is a C^{\prime}-mapping of E into an open set $V \subset R^{m}$. Let ω and λ be k - and m - forms in V respectively. Then prove that
(a) $(\omega+\lambda)_{T}=\omega_{T}+\lambda_{T}$ if $k=m$;
(b) $(\omega \wedge \lambda)_{T}=\omega_{T} \wedge \lambda_{T}$;
(c) $d\left(\omega_{T}\right)=(d \omega)_{T}$ if ω is of class C^{\prime} and T is of class $C^{\prime \prime}$.

OR
2. Suppose ω is k-form in an open set $E \subset R^{n}, \phi$ is a surface in E, with parameter domain $D \subset R^{k}$ and Δ is the k - surface in R^{k} with parameter domain D, defined by $\Delta(u)=u(u \in D)$ then show that $\int_{\phi} \omega=\int_{\Delta} \omega_{\phi}$.

