Reg. No

Name

19P4016

MSc DEGREE END SEMESTER EXAMINATION - MARCH/APRIL 2019 SEMESTER 4 : MATHEMATICS

COURSE : 16P4MATT17EL : MULTIVARIATE CALCULUS AND INTEGRAL TRANSFORMS

(For Regular - 2017 Admission and Supplementary 2016 Admission)

Time : Three Hours

Max. Marks: 75

Section A Answer all the following (1.5 marks each)

- 1. Define Integral transforms
- 2. Find the Laplace transform of sin(at)
- 3. Find the Laplace transform of *coshat*
- 4. Show that total derivative of a linear function is the function itself.
- 5. If $f(x) = ||x^2||$ then find f'(c; u).
- 6. Let $f : \mathbb{R} \to \mathbb{R}^2$ be a function given by $f(t) = (\cos t, \sin t)$. Show that the ordinary Mean Value theorem does not hold in $[0, 2\pi]$.
- 7. Let $f : \mathbb{R} \to \mathbb{R}^2$ be defined by $f(t) = (\cos t, \sin t)$ and $f'(t)(u) = u(-\sin t, \cos t)$. Show that for every vector $a \in \exists z' \in (0, 2\pi)$ such that $a. \{f(y) - f(x)\} = a. \{f'(z)(y - x)\}.$
- 8. Show by an example that f need not be one-one on S even when $J_f(x)
 eq 0 \ orall x \in S.$
- 9. Write any three elementary properties of k-forms
- 10. Define the term primitive mapping

 $(1.5 \times 10 = 15)$

Section B Answer any 4 (5 marks each)

11. Show that convolution may not be defined if f and g are Lebesgue integrable

12. Prove that
$$\cos x = rac{8}{\pi}\sum\limits_{n=1}^{\infty}rac{n\sin 2nx}{4n^2-1}$$
 if $0\leq x\leq \pi.$

13. Compute the gradient vector
$$\nabla f(x, y)$$
 at those points (x, y) in \mathbb{R}^2 where it exists.
a) $f(x, y) = x^2 y^2 log(x^2 + y^2)$ if $x, y) \neq (0, 0), f(0, 0) = 0$
b) $f(x, y) = xysin \frac{1}{x^2 + y^2} if(x, y) \neq (0, 0), f(0, 0) = 0$

- 14. State and prove the Mean value theorem
- 15. Show that the rectangular solid of maximum volume that can be inscribed in a given sphere is a cube

16. Suppose $w = \sum_{I} b_{I}(x) dx_{I}$ is the standared representation of a k - form w in an open set $E \in \mathbb{R}^{n}$. If w = 0 in E, then prove that $b_{I}(x) = 0$ for every increasing k - index I and for every $x \in E$

 $(5 \times 4 = 20)$

Section C Answer any 4 (10 marks each)

17.1. State and prove the convolution theorem for Fourier Transforms

OR

- 2. Find the Fourier transform of $f(x)=rac{1-x^2}{0}$ $rac{when|x|<1}{when|x|>1}$ Use it to evaluate $\int_0^\infty rac{xcosx-sinx}{x^3}cosrac{x}{2}dx$
- 18.1. Let u and v be-two real-valued functions defined on a subset S of the complex plane. Assume also that u and v are differentiable at an interior point c of S and that the partial derivatives satisfy the Cauchy-Riemann equations at c.Then show that the function f = u + iv has a derivative at c. Moreover, $f'(c) = D_1 u(c) + iD_1 v(c)$.

2. a)Derive the matrix form of Chain rule b)Compute the gradient vector $\nabla f(x,y)$ at those points(x,y)in R^2 where it exists

$$f(x,y) = xysinrac{1}{x^2+y^2}if(x,y)
eq (0,0), f(0,0) = 0$$

19.1. (a) State and prove second derivative test for extrema. (b)Find and classify the extremum values of the function $f(x, y) = x^2 + y^2 + x + y + xy.$

OR

- 2. Let B = B(a; r) be an n-ball in \mathbb{R}^n , let δB denote its boundary, $\delta B = x : ||x - a|| = r$, and let $B = BU\delta B$ denote its closure. Let $f = (f_1, \ldots, f_n)$ be continuous on B, and assume that all the partial derivatives $Djf_i(x)$ exist if $x \in B$. Assume further that $f(x) \neq f(a)$ if $x \in \partial B$ and that the Jacobian determinant $J_f(x) \neq 0$ for each x in B. Then prove that f(B), the image of B under f, contains an n-ball with center at f(a)
- 20.1. Suppose E is an open set in \mathbb{R}^n , T is a C'-mapping of E into an open set $V \subset \mathbb{R}^m$. Let ω and λ be k- and m- forms in V respectively. Then prove that (a) $(\omega + \lambda)_T = \omega_T + \lambda_T$ if k = m; (b) $(\omega \wedge \lambda)_T = \omega_T \wedge \lambda_T$; (c) $d(\omega_T) = (d\omega)_T$ if ω is of class C' and T is of class C''.

OR

2. Suppose ω is k-form in an open set $E \subset R^n$, ϕ is a surface in E, with parameter domain $D \subset R^k$ and Δ is the k- surface in R^k with parameter domain D, defined by $\Delta(u) = u(u \in D)$ then show that $\int_{\phi} \omega = \int_{\Lambda} \omega_{\phi}$.