Reg. No

Name

19P4003

MSc DEGREE END SEMESTER EXAMINATION - MARCH/APRIL 2019 SEMESTER 4 : MATHEMATICS

COURSE : 16P4MATT16EL : DIFFERENTIAL GEOMETRY

(For Regular - 2017 Admission and Supplementary 2016 Admission)

Time : Three Hours

Max. Marks: 75

Section A

Answer any 10 (1.5 marks each)

- 1. Describe the level sets of $f(x_1,x_2,x_3)=x_1^2-x_2^2+x_3$, for n=0,1,2.
- 2. Sketch the level sets $f^{-1}(c)$ for n=0,1,2, where $f(x_1,\ldots,x_{n+1})=x_{n+1}$ and c=-1,0,1,2
- ^{3.} Sketch the vector field on \mathbb{R}^2 : $\mathbb{X}(p)=(p,X(p))$ where $X(x_1,x_2)=(-2x_2,rac{1}{2}x_1).$
- 4. Find the velocity, the acceleration, and the speed of parametrized curve $\alpha(t) = (\cos 3t, \sin 3t)$.
- 5. Find the velocity, the acceleration, and the speed of parametrized curve $\alpha(t) = (\cos t, \sin t, 2 \cos t, 2 \sin t).$
- 6. Show that if X is parallel along α , then X has constant length.
- 7. Define parametrization of a segment of the plane curve C containing p.
- 8. Define the circle of curvature of a plane curve.
- 9. Give Frenet formula for a plane curve.
- 10. Let S be an oriented n-surface in \mathbb{R}^{n+1} , let $p \in S$, and let $\{k_1(p), \ldots, k_n(p)\}$ be the principal curvatures of S at p with corresponding orthogonal principal curvature directions $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$. Prove that the normal curvature $k(\mathbf{v})$ in the direction

$$\mathbf{v}\in S_p$$
 is given by $k(\mathbf{v})=\sum_{i=1}^nk_i(p)(\mathbf{v}\cdot\mathbf{v}_i)^2=\sum_{i=1}^nk_i(p)\cos^2 heta_i$ where $heta_i=\cos^{-1}(\mathbf{v}\cdot\mathbf{v}_i).$

(1.5 x 10 = 15)

Section B Answer any 4 (5 marks each)

- 11. Find the integral curve through $p = (x_1, x_2) = (1, 1)$ of the vector field $\mathbb{X}(p) = (p, x_2, x_1).$
- 12. Let U be an open set in \mathbb{R}^{n+1} . \mathbb{X} be a smooth vector field on U. Suppose $\alpha: I \to U$ is an integral curve of \mathbb{X} with $\alpha(0) = \alpha(t_0)$ for some $t_0 \in I, \ t_0 \neq 0$. Show that α is periodic.

- 13. Let S be a 2-surface in \mathbb{R}^3 and let $\alpha : I \to S$ be a geodesic in S with $\dot{\alpha} \neq 0$. Prove that a vector field \mathbb{X} tangent to S along α is parallel along α if and only if both $\|\mathbb{X}\|$ and the angle between \mathbb{X} and α are constant along α .
- 14. Compute $abla_v f$ where $f(x_1, x_2) = 2x_1^2 + 3x_2^2$, v = (1, 0, 2, 1).
- 15. Describe the geometric meaning of Weingarten map.
- 16. Let V be a finite dimensional vector space with dot product and let $L: V \to V$ be a self-adjoint linear transformation on V. Let $S = \{v \in V: v \cdot v = 1\}$ and define $f: S \to \mathbb{R}$ by $f(v) = L(v) \cdot v$. Suppose f is staionary at $v_0 \in S$. Prove that $L(v_0) = f(v_0)v_0$.

 $(5 \times 4 = 20)$

Section C Answer any 4 (10 marks each)

- 17.1. Let U be an open set in \mathbb{R}^{n+1} and let $f: U \to \mathbb{R}$ be smooth. Let $p \in U$ be a regular point of f, and let c = f(p). Prove that the set of all vectors tangent to $f^{-1}(c)$ at p is equal to $[\nabla f(p)]^{\perp}$. OR
 - 2. Consider the vector field $\mathbb{X}(x_1, x_2) = (x_1, x_2, x_2, x_1)$ on \mathbb{R}^2 . For $t \in \mathbb{R}$ and $p \in \mathbb{R}^2$, let $\varphi_t(p) = \alpha_p(t)$ where α_p is the maximal integral curve of \mathbb{X} through p. Prove that $t \mapsto \varphi_t$ is a homomorphism from the additive group of real numbers into the group of one to one transformations of the plane.
- 18.1. Let S be an n-surface in \mathbb{R}^{n+1} , let $p, q \in S$, and let α be a piecewise smooth parametrized curve from p to q. Prove that the parallel transport $P_{\alpha} : S_p \to S_q$ along α is a vector space isomorphism which preserves dot products. **OR**
- 2. Let S be a compact connected oriented n-surface in \mathbb{R}^{n+1} exhibited as a level set $f^{-1}(c)$ of a smooth function $f: \mathbb{R}^{n+1} \to \mathbb{R}$ with $\nabla f(p) \neq 0 \quad \forall p \in S$. Prove that the Gauss map maps S onto the unit sphere S^n .
- 19.1. Prove that the Weingarten map Lp is self-adjoint. **OR**
- 2. Let C be a connected oriented plane curve and let $\beta : I \to C$ be a unit speed global parametrization of C. Then prove that

(i) β is either one to one or periodic.

(ii) β is periodic if and only if C is compact.

- 20.1. (i) Find the Gaussian curvature of $\phi(t, \theta) = (\cos \theta, \sin \theta, t)$ (ii) Prove that on each compact oriented *n*-surface S in \mathbb{R}^{n+1} there exists a point p such that the second fundamental form at p is definite. **OR**
 - 2. Let S be an oriented n-surface in \mathbb{R}^{n+1} and let ${f v}$ be a unit vector in $S_p, \ p\in S.$ Then prove that

(i) There exists an open set $V\subset \mathbb{R}^{n+1}$ containing p such that $S\cap \mathcal{N}(\mathbf{v})\cap V$ is a plane curve.

(ii) The curvature at p of this curve is equal to the normal curvature k(v).