\qquad

M. Sc DEGREE END SEMESTER EXAMINATION - OCTOBER 2019
 SEMESTER 3 : MATHEMATICS

COURSE : 16P3MATT15 : NUMBER THEORY
(For Regular - 2018 Admission and Supplementary - 2016/2017 Admissions)

Time : Three Hours
Max. Marks: 75

Section A

Answer all Questions (1.5 marks each)

1. Give a multiplicative function which is not completely multiplicative. Explain.
2. Show that the divisor functions are multiplicative.
3. Solve the congruence $25 x \equiv 15(\bmod 120)$.
4. State and prove Wilson's theorem.
5. Let D be a domain. Prove that x is a unit if and only if $x \mid 1$.
6. Show by an example that there exists a ring which is not Noetherian.
7. Let D be a domain and x and y non-zero elements of D. Prove that x and y are associates if and only if $\langle x\rangle=\langle y\rangle$.
8. Define fractional ideal. Prove that the fractional ideal $\mathfrak{a} \subset \mathfrak{O}$ is an ideal.
9. True or false: every ideal of \mathfrak{O} has an \mathbb{Z} - basis. Justify?
10. Prove that $\mathbb{R}[x, y] /\langle x\rangle$ is isomorphic(as rings) to $\mathbb{R}[y]$.
$(1.5 \times 10=15)$

- Section B
 Answer any 4 (5 marks each)

11. Prove that if both g and $f * g$ are multiplicative, then f is also multiplicative.
12. Prove that the set of lattice points visible from the origin has density $6 / \pi^{2}$
13. If $x \geq 1$, prove that

$$
\begin{aligned}
& \text { 1. } \sum_{n>x} \frac{1}{n^{s}}=O\left(x^{1-s}\right) \text { if } s>1 . \\
& \text { 2. } \sum_{n \leq x} n^{\alpha}=\frac{x^{\alpha+1}}{\alpha+1}+O\left(x^{\alpha}\right) \text { if } \alpha \geq 0 .
\end{aligned}
$$

14. Prove that for $x \geq 2, \pi(x)=\frac{\vartheta(x)}{\log x}+\int_{2}^{x} \frac{\vartheta(t)}{t \log ^{2} t} d t$.
15. Prove that the units $U(R)$ of a commutative ring R with unity form a group under multiplication.
16. Prove that every non zero prime ideal of \mathfrak{O} is maximal.

Section C

Answer any 4 (10 marks each)
17.1. State and prove Euler's summation formula.

OR
2. Prove that $\sum_{p \leq x}\left[\frac{x}{p}\right] \log p=x \log x+O(x)$ for $x \geq 2$ where the sum is extended over all primes $\leq x$.
18.1. Prove that the following statements are equivalent

1. $\lim _{x \rightarrow \infty} \frac{\pi(x) \log x}{x}=1$.
2. $\lim _{x \rightarrow \infty} \frac{\vartheta(x)}{x}=1$.
3. $\lim _{x \rightarrow \infty} \frac{\psi(x)}{x}=1$.

OR

2. If p is odd, $p>1$, prove that
3. $1^{2} 3^{2} 5^{2} \ldots(p-2)^{2}=(-1)^{P+1) / 2}(\bmod p)$
4. $2^{2} 4^{2} 6^{2} \ldots(p-1)^{2}=(-1)^{(P+1) / 2}(\bmod p)$.
19.1. Prove that in a domain, in which factorization into irreducibles is possible, factorization is unique if and only if every irreducible is prime.

OR
2. Define Euclidean quadratic Field. Prove that the ring of integers \mathfrak{O} of $\mathbb{Q}(\sqrt{d})$ is Euclidean for $d=-2,-11$.
20.1. Prove that the non-zero fractional ideals of \mathfrak{O} form an abelian group under multiplication.

OR
2. Express $\langle 18\rangle$ as a product of prime ideals.

