Reg. No	Name

M. Sc DEGREE END SEMESTER EXAMINATION - OCTOBER 2019 SEMESTER 3: MATHEMATICS

COURSE: 16P3MATT12: ADVANCED FUNCTIONAL ANALYSIS

(For Regular - 2018 Admission and Supplementary - 2016/2017 Admissions)

Time: Three Hours

Max. Marks: 75

Section A Answer all Questions (1.5 mark each)

- 1. Let $T: X \to Y$ be a bounded linear operator, where X and Y are normed spaces. If $x_n \stackrel{w}{\longrightarrow} x$ then prove that $(T(x_n))$ is strongly operator convergent with limit Tx.
- 2. If T:X o X is a contraction on a metric space X, show that $T^n\ (n\in N)$ is a contraction on X.
- 3. Let $T_n:l^2\to l^2$ be an operator such that $T(x)=(0,0,\ldots,0,\xi_1,\xi_2,\ldots,\xi_n\ldots)n$ zeroes, where $x=(\xi_j)\in l^2$. Prove that T_n is linear and bounded.
- 4. Let A be a complex Banach algebra with identity `e' and $w \in A$ be such that $||w||<rac{1}{2}$. Then prove that $||(e-w)^{-1}-e-w||\leq 2||w||^2$.
- 5. Prove that the set G of all invertible elements of an algebra A with identity e' is a group.
- 6. If X is an infinite dimensional normed space, prove that the identity operator on X is not compact.
- 7. Let $T:X\to Y$ be a linear operator where X and Y are normed spaces. If X is finite dimensional then prove that T is compact.
- 8. Define a positive operator on a complex Hilbert space.
- 9. Suppose S and T are two bounded self adjoint linear operators on a complex Hilbert space H such that $S \leq T$ and $T \leq S$. Then prove that S = T.
- 10. Let $T: H \to H$ be a bounded self adjoint linear operator on a compact Hilbert space H. Prove that the eigen vectors corresponding to different eigen values are orthogonal.

 $(1.5 \times 10 = 15)$

Section B Answer any 4 (5 marks each)

- 11. (a) If $x_n \stackrel{w}{\to} x_0$ in a normed space X, show that $x_0 \in \bar{Y}$, where $Y = \mathrm{span}\,(x_n)$.

 (b) If (x_n) is a weakly convergent sequence in a normed space X, say $x_n \stackrel{w}{\to} x_0$, show that there is a sequence (y_m) of linear combinations of elements of (x_n) which converges strongly to x_0 .
- 12. Let $T_n \in B(X,Y)$, where X is a Banach space and Y a normed space. If (T_n) is strongly operator convergent with limit T, then prove that $T \in B(X,Y)$. If X is only a normed space (ie., X is not complete), will T be bounded always?. Justify.
- 13. Prove that all matrices representing a given linear operator $T:X\to X$, where X is a finite dimensional normed space, with reference to different bases for X have the same eigen values.
- 14. (a) Define an operator function. Is the resolvent operator $R_\lambda(T)$ of a bounded linear operator $T:X\to X$ on a complex Banach space X an operator function. Justify
 - (b) When an operator function S is locally holomorphic?
 - (c) Prove that the resolvent $R_{\lambda}(T)$ is locally holomorphic on ho(T)
- 15. Let X and Y be two normed spaces and $T:X\to Y$ a linear operator. Then prove that T is compact if and only if it maps every bounded sequence (x_n) in X onto a sequence (Tx_n) in Y which has a convergent subsequence.
- 16. Prove that the spectrum $\sigma(T)$ of a bounded self adjoint linear operator $T:H\to H$ on a complex Hilbert space H lies is the interval [m,M], where $m=\inf_{||x||=1}\langle Tx,x\rangle$ and $M=\sup_{||x||=1}\langle Tx,x\rangle$.

Section C Answer any 4 (10 marks each)

- 17.1. (a) Let $T:D(T)\to Y$ be a linear operator, where $D(T)\subseteq X$ and X and Y are normed spaces. Then prove that T is closed if and only if it has the following properties if $(x_n) o x$, where $(x_n)\subseteq D(T)$, and $(Tx_n) o y$, then $x \in D(T)$ and Tx = y.
 - (b) State and prove Banach Fixed point theorem.

- 2. (a) Let $T:\mathcal{D}(T) o Y$ be a bounded linear operator where $\mathcal{D}(T)\subset X$ and X and Y are normed spaces. Then prove the following.(i) If $\mathcal{D}(T)$ is a closed subset of X, then T is closed. (ii) If T is closed and Y is complete, then $\mathcal{D}(T)$ is a closed subset of X.
 - (b) Let T be a closed linear operator from a Banach space X into a normed space Y. If T^{-1} exists and T^{-1} is bounded, then prove that R(T) is a closed subset of Y.
- State and prove spectral mapping theorem for polynomials 18.1.

- (a) Prove that the resolvent set ho(T) of a bounded linear operator T on a complex Banach space X is 2.
 - (b) Prove that the spectrum $\sigma(T)$ of a bounded linear operator T on a complex Banach space X is compact.
- 19.1. (a) Let (T_n) be a sequence of compact linear operators from a normed space X into a Banach space Y. If (T_n) is uniformly operator convergent, then prove that the uniform operator limit is compact.
 - (b) Prove that the above result need not hold if we replace the uniform operator convergence by strong operator convergence.

OR

- 2. (a) Prove that the range R(T) of a compact linear operator T:X o Y is separable, where X and Yare normed spaces.
 - (b) Prove that a compact linear operator T:X o Y from a normed space X into a Banach space Yhas a compact linear extension $ilde{T}:\hat{X} o Y$, where \hat{X} is the completion of X .
- (a) Define a monotone sequence (T_n) of bounded self adjoint linear operators $T_n: H o H$ on a complex Hilbert space H.
 - (b) Let (T_n) be a sequence of bounded self adjoint linear operators on a complex Hilbert space H such that $T_1 \leq T_2 \leq T_3 \leq \ldots \leq K$. Suppose that T_i commutes with K and with every T_m . Then prove that (T_n) is strongly operator convergent. $(T_nx o Tx$ for all $x\in H)$ and the limit operator T is a bounded self adjoint linear operator satisfying $T \leq K$.

2. Let (P_n) be a monotonic increasing sequence of projections P_n defined on a Hilbert space H. Then prove that

$$P(H) = \bigcup_{n=1}^{\infty} \overline{P}_n(H)$$
 (a) P projects H onto

$$N(P) = \bigcap_{n=1}^{\infty} N(P_n)$$
(b) P has the null space

(b) P has the null space.

 $(10 \times 4 = 40)$