Reg. No

Name

19P2043

MSc DEGREE END SEMESTER EXAMINATION - MARCH/APRIL 2019

SEMESTER 2 : MATHEMATICS

COURSE : 16P2MATT09 : FUNCTIONAL ANALYSIS

(For Regular - 2018 Admission and Supplementary - 2017/2016 Admissions)

Time : Three Hours

Max. Marks: 75

Section A

Answer all the following (1.5 marks each)

- 1. Define a bounded linear operator. Give an example.
- 2. If Y is a subspace of a vector space X and f_n a linear functional on X such that f(Y) is not the whole scalar field of X, show that f(y) = 0 for all $y \in Y$.
- 3. State and prove Pythagorean theorem in an inner product space.
- 4. In an inner product space, if $\langle x, u \rangle = \langle x, v \rangle$ for all x, prove that u = v
- 5. If Y is a closed subspace of a Hilbert space H, prove that Y^{\perp} is also a closed subspace of H.
- 6. If Y is a closed subspace of a Hilbert space H, prove that $Y \cap Y^{\perp} = \{0\}$.
- 7. Prove that every bounded linear functional f on l^2 can be represented in the form $f(x) = \sum_{i=1}^{\infty} \xi_i \overline{\eta_i}, x = (\xi_j) \in l^2 \text{ and } z = (n_j) \text{ is a fixed element of } l^2.$
- 8. If $U: H \to H$ is a unitary operator on a Hilbert space H, then prove that U is isometric.
- 9. If $T \in B(X, Y)$, where X and Y are normed spaces and α is a scalar, prove that

$$(\alpha T)^{\times} = \alpha T^{\times}$$

10. Prove that ||. || is a sub linear functional.

 $(1.5 \times 10 = 15)$

Section B

Answer any 4 (5 marks each)

- 11. Prove that the inverse of a bounded linear operator, if it exists, need not be bounded.
- 12. Let $T: C[0,1] \rightarrow C[0,1]$ be defined by

$$y(t) = \int_0^{} x(s) ds = T(x(t)).$$
 Find $R(T)$ and $T^{-1}: R(T) o C[0,1].$ Is T^{-1}

linear and bounded? Justify.

- 13. Prove that l^p with $p \neq 2$ is not an inner product space. Is l^2 an inner product space? Justify.
- 14. Prove that in an inner product space $X, x_n \to x$ and $y_n \to y$ imply (a) $\langle x_n, y \rangle \to \langle x, y \rangle$, (b) $\langle x, y_n \rangle \to \langle x, y \rangle$ and (c) $\langle x_n, y_n \rangle \to \langle x, y \rangle$.

- 15. If h is a bounded sesquilinear functional defined as $X \times Y$ (X and Y are normed spaces), prove that
 - a. $x_n o x$ implies $h(x_n,y) o h(x,y)$
 - b. $y_n \rightarrow y$ implies $h(x, y_n) \rightarrow h(x, y)$
 - c. $x_n o x$ and $y_n o y$ imply $h(x_n, y_n) o h(x, y)$, when (x_n) is a sequence in $X, (y_n)$ is a sequence in $Y, x \in X$ and $y \in Y$
- 16. If X is a normed space, $x \in X$ and g_x is a functional defined on X' by $g_x(f) = f(x)$ for all $f \in X'$, then prove that g_x is bounded linear and $||g_x|| = ||x||$

(5 x 4 = 20)

Section C Answer any 4 (10 marks each)

- a. Prove that on a finite dimensional vector space X any norm ||. || is equivalent to any other norm.
 - b. If a normed space X has the property that the closed unit ball $M = \{x \in X | ||x|| \le 1\}$ is compact, than prove that X is finite dimensional.

OR

- a. Prove that every linear operator defined as a finite dimensional named space X is bounded. Will all linear operators T:R o R be bounded? Justify.
 - b. Let $T: D(T) \to Y$ be a bounded linear operator, where $D(T) \subset X, X$ is a normed space and Y is a Banach space. Then prove that T has an extension $\tilde{T}: \overline{D(T)} \to Y$, where \tilde{T} is bounded linear and $||\tilde{T}|| = ||T||$.
- 18.1.

2.

a. If X is an inner product space, prove that

$$|\langle x,y
angle|\leq \|x\|\,\,\|y\| ext{ for all }x,y\in X$$

Also prove that the equality holds if and only if $\{x, y\}$ is a linearly dependent set.

b. Prove that the norm induced by the inner product in an inner product space X satisfies $||x + y|| \le ||x|| + ||y||$ for all $x, y \in X$, where the equality holds if and only if either y = 0 or x = cy (c is real and non-negative).

OR

2.

- a. Let Y be a subspace of a Hilbert space H. Then prove that:
 - (i) If Y is finite dimensional, then Y is complete.
 - (ii) If H is separable, so is Y.
- b. Show that for a sequence (x_n) is an inner product space X the conditions

$$\|x_n\| o \|x\| ext{ and } \langle x_n,x
angle o \langle x,x
angle$$

imply the convergence $x_n \to x$.

19.1.

2.

- a. Let X be an inter product space and $M
 eq \phi$ be a convex subset which is complete. Then for any $x \in X$ prove that there exists a unique $y \in M$ such that $\delta = \inf_{ ilde y \in M} ||x ilde y|| = ||x y||$
 - b. If M is a complete subspace Y, then prove that z = x y is orthogonal to Y

OR

- a. If H is a separable Hilbert space, then prove that every orthonormal set in H is countable
 - b. If a Hilbert space H contains a total orthonormal sequence, then prove that H is separable.
 - c. Let H be a Hilbert space, $S:H\to H$ and $T:H\to H$ two bounded linear operators. Then prove that

i.
$$(ST)^{st} = T^{st}S^{st}$$

ii. $(\alpha T)^* = \overline{\alpha} T^*$ (α is a scalar)

20.1. a. Define a sub linear functional on a real vector space Xb. State and prove Hahn Banach theorem for a real vector space.

OR

2.

a. State and prove the generalized Hahn Banach theorem.b. If p is a real valued functional defined on a vector space X, satisfying

$$p(x+y) \le p(x) + p(y)$$

and $p(\alpha x) = |\alpha| p(x)$ for all $x, y \in X$ and for all scalars α , then prove that p(0) = 0 and $p(x) \ge 0$ for all $x \in X$.

 $(10 \times 4 = 40)$