\qquad

MSc DEGREE END SEMESTER EXAMINATION - MARCH/APRIL 2019 SEMESTER 2 : MATHEMATICS

COURSE : 16P2MATT09 : FUNCTIONAL ANALYSIS

(For Regular - 2018 Admission and Supplementary - 2017/2016 Admissions)

Time : Three Hours
Max. Marks: 75

Section A

Answer all the following (1.5 marks each)

1. Define a bounded linear operator. Give an example.
2. If Y is a subspace of a vector space X and f_{n} a linear functional on X such that $f(Y)$ is not the whole scalar field of X, show that $f(y)=0$ for all $y \in Y$.
3. State and prove Pythagorean theorem in an inner product space.
4. In an inner product space, if $\langle x, u\rangle=\langle x, v\rangle$ for all x, prove that $u=v$
5. If Y is a closed subspace of a Hilbert space H, prove that Y^{\perp} is also a closed subspace of H.
6. If Y is a closed subspace of a Hilbert space H, prove that $Y \cap Y^{\perp}=\{0\}$.
7. Prove that every bounded linear functional f on l^{2} can be represented in the form $f(x)=\sum_{j=1}^{\infty} \xi_{i} \overline{\eta_{i}}, x=\left(\xi_{j}\right) \in l^{2}$ and $z=\left(n_{j}\right)$ is a fixed element of l^{2}.
8. If $U: H \rightarrow H$ is a unitary operator on a Hilbert space H, then prove that U is isometric.
9. If $T \in B(X, Y)$, where X and Y are normed spaces and α is a scalar, prove that
$(\alpha T)^{\times}=\alpha T^{\times}$
10. Prove that $\|$.$\| is a sub linear functional.$
$(1.5 \times 10=15)$

Section B

Answer any 4 (5 marks each)
11. Prove that the inverse of a bounded linear operator, if it exists, need not be bounded.
12. Let $T: C[0,1] \rightarrow C[0,1]$ be defined by
$y(t)=\int_{0}^{t} x(s) d s=T(x(t))$. Find $R(T)$ and $T^{-1}: R(T) \rightarrow C[0,1]$. Is T^{-1}
linear and bounded? Justify.
13. Prove that l^{p} with $p \neq 2$ is not an inner product space. Is l^{2} an inner product space? Justify.
14. Prove that in an inner product space $X, x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ imply
(a) $\left\langle x_{n}, y\right\rangle \rightarrow\langle x, y\rangle$,
(b) $\left\langle x, y_{n}\right\rangle \rightarrow\langle x, y\rangle$ and
(c) $\left\langle x_{n}, y_{n}\right\rangle \rightarrow\langle x, y\rangle$.
15. If h is a bounded sesquilinear functional defined as $X \times Y(X$ and Y are normed spaces), prove that
a. $x_{n} \rightarrow x$ implies $h\left(x_{n}, y\right) \rightarrow h(x, y)$
b. $y_{n} \rightarrow y$ implies $h\left(x, y_{n}\right) \rightarrow h(x, y)$
c. $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ imply $h\left(x_{n}, y_{n}\right) \rightarrow h(x, y)$, when $\left(x_{n}\right)$ is a sequence in $X,\left(y_{n}\right)$ is a sequence in $Y, x \in X$ and $y \in Y$
16. If X is a normed space, $x \in X$ and g_{x} is a functional defined on X^{\prime} by $g_{x}(f)=f(x)$ for all $f \in X^{\prime}$, then prove that g_{x} is bounded linear and $\left\|g_{x}\right\|=\|x\|$
(5 x $4=20$)

Section C Answer any 4 (10 marks each)

17.1. a. Prove that on a finite dimensional vector space X any norm $\|$. $\|$ is equivalent to any other norm.
b. If a normed space X has the property that the closed unit ball $M=\{x \in X \mid\|x\| \leq 1\}$ is compact, than prove that X is finite dimensional.

OR
2. a. Prove that every linear operator defined as a finite dimensional named space X is bounded. Will all linear operators $T: R \rightarrow R$ be bounded? Justify.
b. Let $T: D(T) \rightarrow Y$ be a bounded linear operator, where $D(T) \subset X, X$ is a normed space and Y is a Banach space. Then prove that T has an extension $\tilde{T}: \overline{D(T)} \rightarrow Y$, where \tilde{T} is bounded linear and $\|\tilde{T}\|=\|T\|$.
18.1. a. If X is an inner product space, prove that

$$
|\langle x, y\rangle| \leq\|x\|\|y\| \text { for all } x, y \in X
$$

Also prove that the equality holds if and only if $\{x, y\}$ is a linearly dependent set.
b. Prove that the norm induced by the inner product in an inner product space X satisfies $\|x+y\| \leq\|x\|+\|y\|$ for all $x, y \in X$, where the equality holds if and only if either $y=0$ or $x=c y$ (c is real and non-negative).

OR

2. a. Let Y be a subspace of a Hilbert space H. Then prove that:
(i) If Y is finite dimensional, then Y is complete.
(ii) If H is separable, so is Y.
b. Show that for a sequence $\left(x_{n}\right)$ is an inner product space X the conditions

$$
\left\|x_{n}\right\| \rightarrow\|x\| \text { and }\left\langle x_{n}, x\right\rangle \rightarrow\langle x, x\rangle
$$

imply the convergence $x_{n} \rightarrow x$.
19.1. a. Let X be an inter product space and $M \neq \phi$ be a convex subset which is complete. Then for any $x \in X$ prove that there exists a unique $y \in M$ such that $\delta=\inf _{\tilde{y} \in M}\|x-\tilde{y}\|=\|x-y\|$
b. If M is a complete subspace Y, then prove that $z=x-y$ is orthogonal to Y

OR

2. a. If H is a separable Hilbert space, then prove that every orthonormal set in H is countable
b. If a Hilbert space H contains a total orthonormal sequence, then prove that H is separable.
c. Let H be a Hilbert space, $S: H \rightarrow H$ and $T: H \rightarrow H$ two bounded linear operators. Then prove that
i. $(S T)^{*}=T^{*} S^{*}$
ii. $(\alpha T)^{*}=\bar{\alpha} T^{*}(\alpha$ is a scalar)
20.1. a. Define a sub linear functional on a real vector space X
b. State and prove Hahn Banach theorem for a real vector space.

OR

2. a. State and prove the generalized Hahn Banach theorem.
b. If p is a real valued functional defined on a vector space X, satisfying

$$
p(x+y) \leq p(x)+p(y)
$$

and $p(\alpha x)=|\alpha| p(x)$ for all $x, y \in X$ and for all scalars α, then prove that $p(0)=0$ and $p(x) \geq 0$ for all $x \in X$.

