Reg. No

Name

M Sc DEGREE END SEMESTER EXAMINATION - OCTOBER 2019

SEMESTER 1 : MATHEMATICS

COURSE : 16P1MATT05 : COMPLEX ANALYSIS

(For Regular - 2019 Admission and Supplementary - 2016/2017/2018 Admissions)

Time : Three Hours

Max. Marks: 75

Section A Answer any 10 (1.5 marks each)

- 1. "The set M of all Mobius transformations does not have the commutative property"True or false. Justify
- 2. Let $f: C \to C$ be a complex valued function given by f(z) = u(x, y) + iv(x, y). Suppose that $v(x, y) = 3xy^2$. Then f cannot be holomorphic on C for any choice of u. True or Faulse. Justify?
- 3. Prove that the map $w = \overline{z}$ is not conformal
- 4. Define winding number
- 5. Evaluate $\int_r x dz$, where r is the directed line seqment from 0 to 1+i
- 6. Find the value of $\int_C rac{1}{z} dz$ where C is the circle $z=e^{i\emptyset}, 0 \leqq \emptyset \leqq \pi$

- 8. Explain the term chain
- 9. State Schwarz reflection principle
- 10. Find the residue at z=0 of the function $(f(z)=rac{e^{2z}}{z^4})$

 $(1.5 \times 10 = 15)$

Section B Answer any 4 (5 marks each)

11. If $T(z)=rac{az+b}{cz+d}$, find z_2,z_3,z_4 (in terms of a,b,c,d) such that $T(z)=(z,z_2,z_3,z_4)$

- 12. Give a precise definition of a single valued branch of \sqrt{z} and prove that it is analytic
- 13. State and prove Cauchy's Integral formula
- 14. Find zeros and discuss the singularities of the function $f(z) = \frac{z-2}{z^2} sin(\frac{1}{z-1})$
- 15. State Rouche's theorem and apply it to determine the number of roots of the equation $z^8-4z^5+z^2-1=0$
- 16. If $u(x,y) = x^3 3xy^2 + 3x^2 3y^2 + x$, then prove that u is a harmonic function and find its harmonic conjugate.

$$(5 \times 4 = 20)$$

Section C Answer any 4 (10 marks each)

17.1. Prove that the cross ratio is real iff the four points lie on a circle or on a straight line. Also find the linear transformation which carries $z = \infty, i, 0$ into $w = 0, i, \infty$

OR

- 2. Find the Mobius transformation which maps the circle $|z| \leq 1$ on $|w-1| \leq 1$ and makes the points z=0,1 correspond to w=1/2,0 respectively
- 18.1. a. State and prove the lemma for higher derivativesb. State and prove Liouvillie's theorem

OR

- 2. a. Evaluate $\int_{|z|=5} rac{z+5}{z^2-3z-4} dz$ b. State and prove Morera's theorem
- 19.1. State and give the topological and analytic proof of Maximum principle

OR

- 2. Define a simply connected region . Also prove that a region Ω is simply connected iff $n(\Upsilon, a) = 0$ for all cycles Υ in Ω and all point a which do not belong to Ω
- 20.1. Evaluate $\int\limits_{0}^{\pi} rac{d heta}{a^2+sin^2 heta}$ where a>0

OR

2. Evaluate
$$\int_{-}^{-} 0^{\infty} rac{x^2}{(x^2+a^2)^3} dx$$

 $(10 \times 4 = 40)$