Reg. No	Name
1.69.110	Name

M. Sc DEGREE END SEMESTER EXAMINATION - OCTOBER 2019 SEMESTER 1 : MATHEMATICS

COURSE: 16P1MATT03: MEASURE THEORY AND INTEGRATION

(For Regular - 2019 Admission and Supplementary - 2016/2017/2018 Admissions)

Time: Three Hours

Max. Marks: 75

Section A Answer all Questions (1.5 mark each)

- 1. Prove that the outer measure of the set of all rationals in [0,1] is zero.
- 2. If $m^*A = 0$, then prove that $m^*(A \cup B) = m^*B$ for any set B.
- 3. Give an example of a decreasing sequence $< E_n >$ of measurable sets such that $m\left(\cap_1^\infty E_n\right) \neq \lim m E_n$.
- 4. Define a step function. Give an example.
- 5. If f is integrable over a measurable set E of finite measure and $A \leq f \leq B$, then prove that $AmE \leq \int_E f \leq BmE$. Hence, prove that there exists $A \leq k \leq B$ such that $\int_E f = kmE$. Deduce that $\int_a^b f = k(b-a)$.
- 6. If f is integrable, then prove that f is finite valued a.e.
- 7. Let c' be a constant and f be a measurable function defined on X, where (X,\mathcal{B}) is a measurable space.

Then prove that cf and f+c are measurable.

- 8. If μ is a measure on an algebra α and μ^* is the outer measure defined by μ , prove that $\mu^*A=\mu A$ if $A\in\alpha$.
- 9. Prove that every finite measure is a σ -finite measure but the converse of it is not true.
- 10. Let μ and ν be complete measures. Show that $\mu \times \nu$ need not be complete.

 $(1.5 \times 10 = 15)$

Section B Answer any 4 (5 marks each)

- 11. (a) Define the binary operation sum modulo 1 (+) on [0,1).
 - (b) Prove that $\overset{\circ}{+}$ is associative and commutative.
 - (c) What is the inverse of any $x \in [0,1)$ under $\stackrel{\circ}{+}$?.
- 12. (a) Define cantor ternary set. Is it measurable? Justify. (b) Show that Cantor ternary set has measure zero.
- Let $\langle u_n \rangle$ be a sequence of non-negative measurable functions and let $f=\sum_1^\infty u_n$. Then prove that $\int f=\sum_1^\infty \int u_n$.
- 14. Let f and g be integrable over E. Then prove that
 - (a) The function cf is integrable over E and $\int_E cf = c\int_E f$ (c is a constant)
 - (b) The function f+g is integrable over E and

$$\int_E (f+g) = \int_E f + \int_E g.$$

15. Let lpha be an algebra of subsets of a space X. If $A\in lpha$ and if $\langle A_i
angle$ is any sequence of sets in lpha such that $A\subset \bigcup_{i=1}^\infty A_i$, then prove that $\mu A\leq \sum_{i=1}^\infty \mu A_i$.

16. Prove that $\mathcal{S} \times \mathcal{J} = \mathcal{M}_{\circ}(\mathcal{E})$.

 $(5 \times 4 = 20)$

Section C

Answer any 4 (10 marks each)

- 17.1. (a) Let f be an extended real valued function whose domain is a measurable set. Prove that the following statements are equivalent
 - (i) for each real number α , $\{x:f(x)>\alpha\}$ is measurable.
 - (ii) for each real number α , $\{x:f(x)\geq \alpha\}$ is measurable.
 - (iii) for each real number lpha, $\{x:f(x)<lpha\}$ is measurable.
 - (iv) for each real number α , $\{x:f(x)\leq \alpha\}$ is measurable.
 - (b) If f is Lebesgue measurable, prove that $\{x:f(x)=\alpha\}$ is measurable for all extended real numbers α .

OR

- 2. (a) If f is a measurable function, then prove that $\mathcal{M} = \{E : f^{-1}(E) \text{ is measurable}\}$ is a σ -algebra.
 - (b) If B is a Borel set, prove that $f^{-1}(B)$ is measurable.
 - (c) If $\langle f_n
 angle$ is a sequence of measurable functions (with the same domain), then prove that
 - (i) $\sup\{f_1, f_2, \dots, f_n\}$ is measurable.
 - (ii) $\sup_n f_n$ is measurable.
 - (iii) $\lim f_n$ is measurable.
- 18.1. (a) Define Riemann integral of a bounded function over a finite closed integral [a, b] interms of step functions.
 - (b) Define Lebesgue integral of a bounded measurable function defined on a measurable set ${\cal E}$ with $m{\cal E}$ finite.
 - (c) Let f be a bounded function defined an [a,b]. If f is Riemann integrable, then prove that it is measurable and

$$R\int_a^b f(x)dx = \int_a^b f(x)dx.$$

OR

- 2. (a) State and prove Bounded Convergence theorem. (b) State and prove Fatou's lemma.
- 19.1. (a) State and prove Hahn decomposition theorem.
 - (b) Give an example to show that the Hahn decomposition need not be unique.

OR

- 2. (a) Let (X,B,μ) be a measuer space and f be a measurable function defined on X such that $\int f d\mu$ is defined. Prove that the set function ν defined on B by $\nu E = \int_E f d\mu$ is a signed measure.
 - (b) Find a Hahn decomposition of X w.r.t. u
 - (c) Find a Jordan decomposition of ν .
- 20.1. If $E\in\mathcal{S} imes\mathcal{J}$, then prove that for each $x\in X$ and $y\in Y$, $E_x\in\mathcal{J}$ and $E^y\in S$.

OR

2. Let f be a non-negative $\mathcal{S} \times \mathcal{J}$ measurable function and let $\phi(x) = \int_Y f_x d\nu$, $\psi(y) = \int_X f^y d\mu$ for each $x \in X$ and $y \in Y$. Then prove that ϕ is \mathcal{S} -measurable and ψ is \mathcal{J} -measurable and $\int\limits_X \phi d\mu = \int_{X \times Y} f d(\mu \times \nu) = \int_Y \psi d\nu.$