\qquad Name \qquad

M. Sc DEGREE END SEMESTER EXAMINATION - OCTOBER 2019

 SEMESTER 1 : MATHEMATICS

 SEMESTER 1 : MATHEMATICS}

COURSE : 16P1MATT01 : LINEAR ALGEBRA
(For Regular - 2019 Admission and Supplementary - 2016/2017/2018 Admissions)

Time : Three Hours
Max. Marks: 75

Section A
 Answer all Questions (1.5 mark each)

1. Is the set of vectors $\alpha=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$ such that $a_{1} \geq 0$ a subspace of \mathbb{R}^{n} ?
2. Let S be a linearly independent subset of a vector space V. Suppose β is a vector in V which is not in the subspace spanned by S. Show that the set obtained by adjoining β to S is linearly independent.
3. Prove that the space of all $m \times n$ matrices over the field F has dimension $m n$, by exhibiting a basis for this space.
4. Define a non-singular transformation. Show that $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T(x, y)=(x+y, y)$ is nonsingular.
5. Define range,rank, null space, and nullity of a linear transformation.
6. Define hyperspace in a vector space. Give an example.
7. Let D be a 2-linear function with the property that $D(A)=0$ for all 2×2 matrices A over K having equal rows. Show that D is alternating.
8. Show that similar matrices have the same characteristic polynomial.
9. Define the terms characteristic value, characteristic vector and characteristic space with respect to a linear operator T on a vector space V.
10. Define invariant subspace with an example. Also state a necessary condition for a subspace to be invariant.
$(1.5 \times 10=15)$

-

Section B

Answer any 4 (5 marks each)

11. Let V be the vector space of all functions from \mathbb{R} into \mathbb{R}; let V_{e} be the subset of even functions, $f(-x)=f(x)$; let V_{o} be the subset of odd functions $f(-x)=-f(x)$.
(a) Prove that V_{e} and V_{o} are subspaces of V.
(b) Prove that $V_{e}+V_{o}=V$
(c) Prove that $V_{e} \cap V_{o}=\{0\}$.
12. Let A be an $n \times n$ matrix over a field F and suppose that the row vectors of A form a linearly independent set of vectors in F^{n}. Show that A is invertible.
13. Let $\mathscr{B}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ be the basis for \mathbb{C}^{3} defined by $\alpha_{1}=(1,0,-1), \alpha_{2}=(1,1,1), \alpha_{3}=(2,2,0)$. Find the dual basis of \mathscr{B}.
14. Show that $\{(1,2),(3,4)\}$ is a basis for \mathbb{R}^{2}. Let T be the unique linear transformation from \mathbb{R}^{2} to \mathbb{R}^{3} such that $T(1,2)=(3,2,1)$ and $T(3,4)=(6,5,4)$. Find $T(1,0)$
15. Let A be an $n \times n$ matrix with λ as an eigen value. Show that,
(a) $k+\lambda$ is an eigen value of $A+k I$.
(b) If A is non-singular, $\frac{1}{\lambda}$ is an eigen value of A^{-1}.
16. Let V be a finite dimensional vector space over a field F and T be a linear operator on V. Prove that T is triangulable if and only if the minimal polynomial for T is a product of linear polynomials over F.

Section C
 Answer any 4 (10 marks each)

17.1. (a) Let V be the set of all complex valued functions on the real line such that $f(-t)=\overline{f(t)}$, where $\overline{f(t)}$ is the conjugate of $f(t)$. Show that V is a vector space over \mathbb{R}. Is V finite dimensional? Justify your answer.
(b) Let V be the space of all 2×2 matrices over \mathbb{R}. Let W_{1} be the set of all matrices of the form $\left[\begin{array}{ll}x & y \\ z & 0\end{array}\right]$ and W_{2} be the set of all matrices of the form $\left[\begin{array}{ll}x & y \\ 0 & z\end{array}\right]$, where $x, y, z \in \mathbb{R}$. Show that W_{1} and W_{2} are subspaces.Find the intersection $W_{1} \cap W_{2}$ OR
2. Let V be the vector space of all 2×2 matrices over the field F. Let W_{1} be the set of matrices of the form $\left[\begin{array}{cc}x & -x \\ y & z\end{array}\right]$ and let W_{2} be the set of matrices of the form $\left[\begin{array}{cc}a & b \\ -a & c\end{array}\right]$. Prove that W_{1} and W_{2} are subspaces of V. Also find the dimensions of $W_{1}, W_{2}, W_{1}+W_{2}$ and $W_{1} \cap W_{2}$.
18.1. Let V be a finite- dimensional vector space over the field F. Prove that V and $V^{* *}$ are isomorphic.Further show that each basis for V^{*} is the dual of some basis for V.

OR

2. (a) Does there exist a linear transformation $T: R^{3} \rightarrow R^{2}$ such
that $T(1,-1,1)=(1,0)$ and $T(1,1,1)=(0,1)$?. Justify.
(b) Let V and W be finite-dimensional vector spaces over the field F. Prove that V and W are isomorphic if and only if $\operatorname{dim} V=\operatorname{dim} W$.
(c) Let T be the linear operator on R^{2} defined by $T\left(x_{1}, x_{2}\right)=\left(x_{1}, 0\right)$. Compute the matrix of T relative to the ordered basis $\{(1,1),(2,1)\}$.
19.1. (a) Let D be an n-linear function on the space of $n \times n$ matrices over a field K. Suppose D has the property that $D(A)=0$ whenever two adjacent rows of A are equal. Show that D is alternating.
(b) Let $n>1$ and let D be an alternating $(n-1)$ linear function on an $(n-1) \times(n-1)$ matrix over
K. Show that for each $j, j=1, \ldots, n$, the function E_{j} defined by $E_{j}(A)=\sum_{i=1}^{n}(-1)^{(i+j)} A_{i j} D_{i j}(A)$ is an alternating n-linear function on the space of $n \times n$ matrices A. If D is the determinant function, so is E_{j}.

OR

2. (a) If A is an $n \times n$ skew symmetric matrix with complex entries and n is odd, prove that det $A=0$.
(b) If A is an $n \times n$ invertible matrix over a field F, show that $\operatorname{det} A \neq 0$.
20.1. (a) Let T be a linear operator on a finite dimensional space V. Let $c_{1}, c_{2}, \cdots, c_{k}$ be the distinct characteristic values and $W_{1}, W_{2}, \cdots, W_{k}$ be the corresponding characteristic spaces. Prove that $\operatorname{dim}\left(W_{1}+W_{2}+\cdots+W_{k}\right)=\operatorname{dim} W_{1}+\operatorname{dim} W_{2}+\cdots+\operatorname{dim} W_{k}$.
(b) If W_{1} and W_{2} are subspaces of V then prove that they are independent if and only if $W_{1} \cap W_{2}=0$.

OR

2. (a) If W is an invariant subspace for T, show that W is invariant under every polynomial in T. Hence show that for each $\alpha \in V$, the T-conductor $(S \alpha, W)$ is an ideal in the polynomial ring $F[X]$.
(b) Let W be an invariant subspace for T. Show that the characteristic polynomial for the restriction operator T_{W} divides the characteristic polynomial for T and the minimal polynomial for the restriction operator T_{W} divides the minimal polynomial for T.
