19P1003

Reg. No

Name

M. Sc DEGREE END SEMESTER EXAMINATION - OCTOBER 2019

SEMESTER 1 : MATHEMATICS

COURSE : 16P1MATT01 : LINEAR ALGEBRA

(For Regular - 2019 Admission and Supplementary - 2016/2017/2018 Admissions)

Time : Three Hours

Max. Marks: 75

 $(1.5 \times 10 = 15)$

Section A

Answer all Questions (1.5 mark each)

- 1. Is the set of vectors $lpha=(a_1,\ldots,a_n)\in\mathbb{R}^n$ such that $a_1\geq 0$ a subspace of \mathbb{R}^n ?
- 2. Let S be a linearly independent subset of a vector space V. Suppose β is a vector in V which is not in the subspace spanned by S. Show that the set obtained by adjoining β to S is linearly independent.
- 3. Prove that the space of all $m \times n$ matrices over the field F has dimension mn, by exhibiting a basis for this space.
- 4. Define a non-singular transformation. Show that $T:\mathbb{R}^2 o\mathbb{R}^2$ defined by T(x,y)=(x+y,y) is non-singular.
- 5. Define range, rank, null space, and nullity of a linear transformation.
- 6. Define hyperspace in a vector space. Give an example.
- 7. Let D be a 2-linear function with the property that D(A) = 0 for all 2×2 matrices A over K having equal rows. Show that D is alternating.
- 8. Show that similar matrices have the same characteristic polynomial.
- 9. Define the terms characteristic value, characteristic vector and characteristic space with respect to a linear operator T on a vector space V.
- 10. Define invariant subspace with an example. Also state a necessary condition for a subspace to be invariant.

Section B Answer any 4 (5 marks each)

11. Let V be the vector space of all functions from \mathbb{R} into \mathbb{R} ; let V_e be the subset of even functions, f(-x) = f(x); let V_o be the subset of odd functions f(-x) = -f(x). (a) Prove that V_e and V_o are subspaces of V. (b) Prove that $V_e + V_o = V$

(c) Prove that
$$V_e \cap V_o = \{0\}$$
.

- 12. Let A be an $n \times n$ matrix over a field F and suppose that the row vectors of A form a linearly independent set of vectors in F^n . Show that A is invertible.
- 13. Let $\mathscr{B} = \{\alpha_1, \alpha_2, \alpha_3\}$ be the basis for \mathbb{C}^3 defined by $\alpha_1 = (1, 0, -1), \alpha_2 = (1, 1, 1), \alpha_3 = (2, 2, 0).$ Find the dual basis of \mathscr{B} .
- 14. Show that $\{(1,2), (3,4)\}$ is a basis for \mathbb{R}^2 . Let T be the unique linear transformation from \mathbb{R}^2 to \mathbb{R}^3 such that T(1,2) = (3,2,1) and T(3,4) = (6,5,4). Find T(1,0)
- 15. Let A be an $n \times n$ matrix with λ as an eigen value. Show that, (a) $k + \lambda$ is an eigen value of A + kI. (b) If A is non-singular, $\frac{1}{\lambda}$ is an eigen value of A^{-1} .
- 16. Let V be a finite dimensional vector space over a field F and T be a linear operator on V. Prove that T is triangulable if and only if the minimal polynomial for T is a product of linear polynomials over F.

Section C Answer any 4 (10 marks each)

- 17.1. (a)Let V be the set of all complex valued functions on the real line such that $f(-t) = \overline{f(t)}$, where $\overline{f(t)}$ is the conjugate of f(t). Show that V is a vector space over \mathbb{R} . Is V finite dimensional? Justify your answer.
 - (b) Let V be the space of all 2×2 matrices over \mathbb{R} .Let W_1 be the set of all matrices of the form $\begin{bmatrix} x & y \\ z & 0 \end{bmatrix}$ and W_2 be the set of all matrices of the form $\begin{bmatrix} x & y \\ 0 & z \end{bmatrix}$, where $x, y, z \in \mathbb{R}$.Show that W_1 and W_2 are subspaces.Find the intersection $W_1 \cap W_2$
 - OR
 - 2. Let V be the vector space of all 2×2 matrices over the field F. Let W_1 be the set of matrices of the form $\begin{bmatrix} x & -x \\ y & z \end{bmatrix}$ and let W_2 be the set of matrices of the form $\begin{bmatrix} a & b \\ -a & c \end{bmatrix}$. Prove that W_1 and W_2 are subspaces of V. Also find the dimensions of $W_1, W_2, W_1 + W_2$ and $W_1 \cap W_2$.
- 18.1. Let V be a finite- dimensional vector space over the field F. Prove that V and V^{**} are isomorphic.Further show that each basis for V^* is the dual of some basis for V.

OR

- 2. (a) Does there exist a linear transformation $T : R^3 \to R^2$ such that T(1, -1, 1) = (1, 0) and T(1, 1, 1) = (0, 1)?. Justify. (b) Let V and W be finite-dimensional vector spaces over the field F. Prove that V and W are isomorphic if and only if dim $V = \dim W$. (c) Let T be the linear operator on R^2 defined by $T(x_1, x_2) = (x_1, 0)$. Compute the matrix of T relative to the ordered basis $\{(1, 1), (2, 1)\}$.
- 19.1. (a) Let D be an n-linear function on the space of $n \times n$ matrices over a field K. Suppose D has the property that D(A) = 0 whenever two adjacent rows of A are equal. Show that D is alternating. (b) Let n > 1 and let D be an alternating (n - 1) linear function on an $(n - 1) \times (n - 1)$ matrix over

K. Show that for each $j,j=1,\ldots,n$, the function E_j defined by $E_j(A)=\sum_{i=1}^n (-1)^{(i+j)}A_{ij}D_{ij}(A)$ is

an alternating *n*-linear function on the space of $n \times n$ matrices *A*. If *D* is the determinant function, so is E_j .

OR

- 2. (a) If A is an $n \times n$ skew symmetric matrix with complex entries and n is odd, prove that det A = 0. (b) If A is an $n \times n$ invertible matrix over a field F, show that det $A \neq 0$.
- 20.1. (a) Let T be a linear operator on a finite dimensional space V. Let c₁, c₂, ..., c_k be the distinct characteristic values and W₁, W₂, ..., W_k be the corresponding characteristic spaces. Prove that dim(W₁ + W₂ + ... + W_k) = dim W₁ + dim W₂ + ... + dim W_k.
 (b) If W₁ and W₂ are subspaces of V then prove that they are independent if and only if W₁ ∩ W₂ = 0.

OR

2. (a) If W is an invariant subspace for T, show that W is invariant under every polynomial in T. Hence show that for each $\alpha \in V$, the T-conductor $(S\alpha, W)$ is an ideal in the polynomial ring F[X]. (b) Let W be an invariant subspace for T. Show that the characteristic polynomial for the restriction operator T_W divides the characteristic polynomial for T and the minimal polynomial for the restriction operator T_W divides the minimal polynomial for T.

 $(10 \times 4 = 40)$