B.Sc. DEGREE END SEMESTER EXAMINATION MARCH 2018

SEMESTER - 6: MATHEMATICS (CORE COURSE)

COURSE: 15U6CRMAT13: OPERATIONS RESEARCH

(Common for Regular - 2015 Admission & Supplementary - 2014 Admission)

Time: Three Hours Max. Marks: 75

SECTION A

Answer all questions

- 1. Write a basis for R^3 .
- 2. Define convex set.
- 3. What is meant by basic feasible solution of a linear programming problem?
- 4. Define surplus variable.
- 5. Write the dual of the problem $\max f(x) = CX$, subjected to $AX \ge B$, $x \ge 0$.
- 6. What are the characteristic of a queuing system?
- 7. What are the customer behaviour's in a queuing system?
- 8. Define queue length
- 9. Convert the following transportation problem to a balanced transportation problem.

5	5	10	4	10
6	5	8	7	25
2	1	2	5	20
25		10	15	1

10. Define degenerate solution of a transportation problem.

 $(1 \times 10 = 10)$

SECTION B

Answer any Eight questions

- 11. Define vector space
- 12. Show that the intersection of 2 convex set is again a convex set.
- 13. Write the following L.P.P in the standard form

Subjected to
$$x_1+x_2 \geq -3$$

$$-x_1+x_2 \leq 2$$

$$x_1-2x_2 \leq 2$$

$$x_1,x_2 \geq 0$$

14. Write the dual of the L.P.P

$$Max: z = 2x_1 + 3x_2$$

Subject to

$$3x_1 + 7x_2 \le 21$$

$$x_1 - x_2 \le 4$$

$$4x_1 + 5x_2 \le 18$$

$$x_1, x_2 \ge 0$$

- 15. What are artificial variables? Write one example.
- 16. Describe the matrix form of transportation problem.
- 17. Write the mathematical model of an assignment problem.
- 18. Define pure birth process.
- 19. What do you mean by steady state and transient state?
- 20. What is meant by traffic intensity?

 $(2 \times 8 = 16)$

SECTION C

Answer any Five questions

21. Use graphical method, solve the L.P.P

$$Max: z = 3x_1 + 2x_2$$

Subjected to

$$x_1 + x_2 \le 4$$

$$x_1 - x_2 \le 2$$

$$x_1, x_2 \ge 0$$

- 22. Show that the vertex of the set of feasible solutions S_F is a basic feasible solution
- 23. Show that dual of the dual is the primal.
- 24. Solve the transportation problem for minimum cost

	D_1	D_2	D_3	D_4	
O_1	1	2	-2	3	70
O_2	2	4	0	1	38
O_3	1	2	-2	5	32
	40	28	30	42	

25. Four operators A, B, C, D are to be assigned to 4 machines M_1 , M_2 , M_3 , M_4 with the restriction that A and C cannot work on M_3 and M_2 respectively. The assignment cost is given below. Find the minimum assignment cost.

	M_1	M_2	M_3	M_4
Α	5	2	-	5
В	7	3	2	4
С	9	_	5	3
D	7	7	6	2

- 26. State and prove Markovian property of inter arrival times
- 27. What is meant by queue disciple? Describe it with examples.

 $(5 \times 5 = 25)$

SECTION D

Answer any Two questions

28. Solve using Simplex method

$$Minimize: -5x_1 + 2x_2 - 3x_3$$

Subjected to

$$2x_1 + 2x_2 - x_3 \ge 2$$

$$3x_1 - 4x_2 \le 3$$

$$x_2 + 3x_3 \le 5$$

$$x_1,x_2,x_3\geq 0$$

29. Using simplex method

$$Max: -4x_1 - 5x_2$$

Subjected to

$$2x_1 + x_2 \le 6$$

$$x_1 + 2x_2 \le 5$$

$$x_1 + x_2 \ge 1$$

$$x_1 + 4x_2 \ge 2$$

$$x_1, x_2 \ge 0$$

30. Solve the Transportation Problem for minimum cost.

	D_1	D_2	D_3	
o_1	2	1	3	10
02	4	5	7	25
03	6	0	9	25
04	1	3	5	30
	20	20	15	

31. Explain the essential features of queuing system. (12 x 2 = 24)
