B.Sc. DEGREE END SEMESTER EXAMINATION MARCH 2018 SEMESTER - 6: MATHEMATICS (CORE COURSE) COURSE: 15U6CRMAT13: OPERATIONS RESEARCH

(Common for Regular - 2015 Admission \& Supplementary - 2014 Admission)
Time: Three Hours
Max. Marks: 75

SECTION A

Answer all questions

1. Write a basis for R^{3}.
2. Define convex set.
3. What is meant by basic feasible solution of a linear programming problem?
4. Define surplus variable.
5. Write the dual of the problem $\max f(x)=C X$, subjected to $A X \geq B, x \geq 0$.
6. What are the characteristic of a queuing system?
7. What are the customer behaviour's in a queuing system?
8. Define queue length
9. Convert the following transportation problem to a balanced transportation problem.

5 10 4 10 6 8 7
4

10. Define degenerate solution of a transportation problem.
$(1 \times 10=10)$

SECTION B

Answer any Eight questions
11. Define vector space
12. Show that the intersection of 2 convex set is again a convex set.
13. Write the following L.P.P in the standard form

Subjected to

$$
\begin{gathered}
\min : x_{1}+3 x_{2} \\
x_{1}+x_{2} \geq-3 \\
-x_{1}+x_{2} \leq 2 \\
x_{1}-2 x_{2} \leq 2 \\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

14. Write the dual of the L.P.P

$$
\operatorname{Max}: z=2 x_{1}+3 x_{2}
$$

Subject to

$$
\begin{gathered}
3 x_{1}+7 x_{2} \leq 21 \\
x_{1}-x_{2} \leq 4 \\
4 x_{1}+5 x_{2} \leq 18 \\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

15. What are artificial variables? Write one example.
16. Describe the matrix form of transportation problem.
17. Write the mathematical model of an assignment problem.
18. Define pure birth process.
19. What do you mean by steady state and transient state?
20. What is meant by traffic intensity?

SECTION C

Answer any Five questions
21. Use graphical method, solve the L.P.P

$$
\operatorname{Max}: z=3 x_{1}+2 x_{2}
$$

Subjected to

$$
\begin{gathered}
x_{1}+x_{2} \leq 4 \\
x_{1}-x_{2} \leq 2 \\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

22. Show that the vertex of the set of feasible solutions S_{F} is a basic feasible solution
23. Show that dual of the dual is the primal.
24. Solve the transportation problem for minimum cost

	D_{1}	D_{2}	D_{3}	D_{4}	
O_{1}	1	2	-2	3	70
O_{2}	2	4	0	1	38
O_{3}	1	2	-2	5	32
	40	28	30	42	

25. Four operators $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are to be assigned to 4 machines $M_{1}, M_{2}, M_{3}, M_{4}$ with the restriction that A and C cannot work on M_{3} and M_{2} respectively. The assignment cost is given below. Find the minimum assignment cost.

	M_{1}	M_{2}	M_{3}	M_{4}
A	5	2	-	5
B	7	3	2	4
C	9	-	5	3
D	7	7	6	2

26. State and prove Markovian property of inter arrival times
27. What is meant by queue disciple? Describe it with examples.

SECTION D

Answer any Two questions

28. Solve using Simplex method

Minimize : $-5 x_{1}+2 x_{2}-3 x_{3}$
Subjected to
$2 x_{1}+2 x_{2}-x_{3} \geq 2$
$3 x_{1}-4 x_{2} \leq 3$
$x_{2}+3 x_{3} \leq 5$
$x_{1}, x_{2}, x_{3} \geq 0$
29. Using simplex method

Max: $-4 x_{1}-5 x_{2}$
Subjected to
$2 x_{1}+x_{2} \leq 6$
$x_{1}+2 x_{2} \leq 5$
$x_{1}+x_{2} \geq 1$
$x_{1}+4 x_{2} \geq 2$
$x_{1}, x_{2} \geq 0$
30. Solve the Transportation Problem for minimum cost.

	D_{1}	D_{2}	D_{3}	
o_{1}	2	1	3	10
O_{2}	4	5	7	25
o_{3}	6	0	9	25
O_{4}	1	3	5	30
	20	20	15	

31. Explain the essential features of queuing system.
