B.Sc. DEGREE END SEMESTER EXAMINATION MARCH 2018 SEMESTER - 6: MATHEMATICS (CORE COURSE) COURSE: 15U6CRMAT11: DISCRETE MATHEMATICS

For Regular (2015 Admission) \& Supplementary (2014 Admission)
Time: Three Hours
Max. Marks: 75

PART A

Answer all questions. Each question carries 1 mark.

1. How many different spanning trees are there for a complete graph K_{4}.
2. Is it possible to construct a graph with 12 vertices such that 2 of the vertices have degree 3 and the remaining vertices have degree 4. Justify.
3. Draw Peterson graph.
4. State Hall's marriage theorem.
5. Give an example of a maximum matching graph which is not perfect.
6. Draw a Hamilton graph which is not Euler.
7. Define a monoalphabetic cipher.
8. Encrypt the message HOME using the Caesar cipher.
9. State absorption laws of lattice.
10. Define a complete lattice.

PART B

Answer any eight questions. Each question carries $\mathbf{2}$ marks.
11. Define isomorphism of graphs with an example.
12. In any graph G, show that the number of vertices with odd degree is even.
13. Draw the graph having $\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 0 & 0 \\ 1 & 0 & 0\end{array}\right]$ as adjacency matrix.
14. Define a maximal non Hamiltonian graph with an example.
15. State Chinese postman problem.
16. Prove that a tree has atmost one perfect matching.
17. Using the linear cipher $C \equiv 5 p+11(\bmod 26)$, encrypt the message THE MOON IS MADE OF CREAM.
18. Explain public key cryptography.
19. Draw a diagram representing the poset $\{3,5,9,15,24,45\}$ under the divisibility relation.
20. Prove that in a lattice the distributive in equality $a \wedge(b \vee c) \geq(a \wedge b) \vee(a \wedge c)$ holds for any a, b, c.

PART C

Answer any five questions. Each question carries 5 marks.
21. Prove that a graph G is connected if and only if it has a spanning tree.
22. Prove that an edge e of a graph G is a bridge if and only if e is not part of any cycle in G.
23. Show that the number of vertices of a self complementary graph is either $4 m$ or $4 m+1$ for some integer m.
24. Prove that a connected graph G has am Euler trail if and only if it has atmost 2 odd vertices.
25. Prove that a matching M in a graph G is a maximum matching if and only if G contains no M-augmenting path.
26. Explain how encryption and decryption are carried out using Hill's cipher with an example.
27. Show that a poset (L, \leq) is a lattice if and only if every non empty finite subset of L has Sup and Inf.

PART D

Answer any two questions. Each question carries 12 marks.
28. State and prove Whitney's theorem.
29. For a connected graph G, prove that the following statements are equivalent:
(i) G is Eulerian
(ii) The degree of each vertex of G is even (iii) G is an edge disjoint union of cycles.
30. (i) Explain Knapsack cryptosystem.
(ii) The cipher text message produced by the knapsack cryptosystem employing the super increasing sequence $1,3,5,11,35$ modulus $m=73$ and multiplier $a=5$ is $55,15,124,109,25,34$.
31. Obtain the plain text message.
(i) Prove that the dual of complete lattice is complete.
(ii) Prove that in any lattice $L,(a \wedge b) \vee(b \wedge c) \vee(c \wedge a) \leq(a \vee b) \wedge(b \vee c) \wedge(c \vee a)$ for all $a, b, c \in L$.

