# BSC DEGREE END SEM ESTER EXAM INATION MARCH 2017 SEM ESTER - 6 : BSC M ATHEM ATICS (CORE COURSE) <br> COURSE: U6CRM AT10 - COMPLEX ANALYSIS 

Time: Three Hours
Max. Marks: 75

## Part A <br> Answer All Questions. Each Question carries 1 Mark.

1. Define analytic functions
2. Express the function $f(z)=z^{2}+z+1$ in the form $f(z)=u(x, y)+i v(x, y)$
3. Show that $\exp (z+\pi i)=-\exp (z)$
4. Define an arc on the complex plane and give examples.
5. State Cauchy-Goursat theorem.
6. What is the value of $\int_{C} \tan z d z$, where C is the circle $|z|=1$
7. What is meant by convergence of an infinite series of complex numbers?
8. Define singular point of a function.
9. Define pole type singularity.
10. Give an example of a function with an essential singular point.

## Part B

## Answer any Eight questions. Each question carries 2 marks

11. For $\mathrm{f}(\mathrm{z})=\bar{z}$ show that $\mathrm{f}^{\prime}(\mathrm{z})$ does not exist at any point..
12. If a function $f(z)$ is continuous and nonzero at a point $z_{0}$, prove that $f(z) \neq 0$ throughout some neighborhood of that point.
13. Find all values of $z$ such that $\exp (2 z-1)=1$
14. Evaluate $\int_{C} \frac{z+2}{z} \mathrm{dz}$ where C is the semicircle $\mathrm{z}=2 e^{i \theta}(0 \leq \theta \leq \pi)$
15. Evaluate $\int_{C} \frac{\exp (2 \mathrm{z})}{\mathrm{z}^{4}} \mathrm{dz}$ where C is the circle $|z|=1$
16. State and prove fundamental theorem of algebra.
17. State Laurent's theorem.
18. Find the Taylor series expansion of $\frac{1}{z}$ about $\mathrm{z}=1$ and state the condition of validity of the expansion.
19. Discuss the nature of singularity of $\frac{1-\exp (2 z)}{z^{4}}$ at $\mathrm{z}=0$.
20. Determine the order of the pole and the correspondence residue for $\left(\frac{z}{2 z+1}\right)^{3}$

## Part C <br> Answer any Five questions. Each question carries 5 marks

21. Show that $\mathrm{u}(\mathrm{x}, \mathrm{y})=\frac{1}{2} \log \left(x^{2}+y^{2}\right)$ is a harmonic function and find a harmonic conjugate $\mathrm{v}(\mathrm{x}, \mathrm{y})$ of u.
22. Show that $|\sin z|^{2}=\sin ^{2} \mathrm{x}+\sinh ^{2} \mathrm{y}$
23. State and prove Cauchy's integral formula.
24. State and prove Cauchy's inequality.
25. Obtain the two Laurent series in powers of z that represent the function $\mathrm{f}(\mathrm{z})=\frac{1}{\mathrm{z}\left(1+\mathrm{z}^{2}\right)}$ in certain domains and specify those domains.
26. State and prove Cauchy's residue theorem.
27. Using residue theorem evaluate $\int_{0}^{\infty} \frac{\cos (a x)}{x^{2}+1} \mathrm{dx},(\mathrm{a}>0)$

## Part D <br> Answer any Two questions. Each question carries 12 marks

28. Prove that the function $f(z)=u(x, y)+i v(x, y), z=x+i y$ is analytic in a domain $S$ iff $u$ and $v$ are continuous functions having continuous partial derivatives satisfying the differential equation $u_{x}=v_{y}$ and $u_{y}=-v_{x}$.
29. Let C be the unit circle $\mathrm{z}=e^{i \theta}(-\pi \leq \theta \leq \pi)$. Then show that for real constant a , $\int_{C} \frac{e^{a z}}{z} \mathrm{dz}=2 \pi i$. Using this derive the formula $\int_{0}^{\pi} e^{a \cos \theta} \cos (\mathrm{a} \sin \theta) d \theta=\pi$.
30. (a) State and prove Taylor's theorem.
(b) Obtain the Maclaurin series expansion of $\mathrm{f}(\mathrm{z})=\frac{z+1}{z-1}$ and state the region of validity.
31. Using residue theorem evaluate
a. $\int_{0}^{2 \pi} \frac{d \theta}{5+4 \sin \theta}$
b. $\int_{0}^{\infty} \frac{d x}{x^{4}+1}$
