BSc DEGREE END SEMESTER EXAMINATION MARCH 2017 SEMESTER – 6 : BSc MATHEMATICS (CORE COURSE) COURSE: U6CRMAT10 – COMPLEX ANALYSIS

Time: Three Hours

Max. Marks: 75

Part A Answer All Questions. Each Question carries 1 Mark.

- 1. Define analytic functions
- 2. Express the function $f(z) = z^2 + z + 1$ in the form f(z) = u(x,y) + iv(x,y)
- 3. Show that $\exp(z + \pi i) = -\exp(z)$
- 4. Define an arc on the complex plane and give examples.
- 5. State Cauchy-Goursat theorem.
- 6. What is the value of $\int_C \tan z \, dz$, where C is the circle |z| = 1
- 7. What is meant by convergence of an infinite series of complex numbers?
- 8. Define singular point of a function.
- 9. Define pole type singularity.
- 10. Give an example of a function with an essential singular point.

Part B Answer any Eight questions. Each question carries 2 marks

- 11. For $f(z) = \overline{z}$ show that f '(z) does not exist at any point..
- 12. If a function f(z) is continuous and nonzero at a point z_0 , prove that $f(z) \neq 0$ throughout some neighborhood of that point.
- 13. Find all values of z such that exp(2z-1)=1
- 14. Evaluate $\int_C \frac{z+2}{z} dz$ where C is the semicircle $z = 2e^{i\theta}$ ($0 \le \theta \le \pi$)

15. Evaluate
$$\int_C \frac{\exp(zz)}{z^4} dz$$
 where C is the circle $|z| = 1$

- 16. State and prove fundamental theorem of algebra.
- 17. State Laurent's theorem.
- 18. Find the Taylor series expansion of $\frac{1}{z}$ about z = 1 and state the condition of validity of the expansion.
- 19. Discuss the nature of singularity of $\frac{1-\exp(2z)}{z^4}$ at z=0.
- 20. Determine the order of the pole and the correspondence residue for $\left(\frac{z}{2z+1}\right)^3$

Part C Answer any Five questions. Each question carries 5 marks

- 21. Show that $u(x,y) = \frac{1}{2}\log(x^2 + y^2)$ is a harmonic function and find a harmonic conjugate v(x,y) of u.
- 22. Show that $|sinz|^2 = sin^2x + sinh^2y$
- 23. State and prove Cauchy's integral formula.
- 24. State and prove Cauchy's inequality.
- 25. Obtain the two Laurent series in powers of z that represent the function $f(z) = \frac{1}{z(1+z^2)}$ in certain domains and specify those domains.
- 26. State and prove Cauchy's residue theorem.
- 27. Using residue theorem evaluate $\int_0^\infty \frac{\cos(ax)}{x^2+1} \, dx$, (a>0)

Part D Answer any Two questions. Each question carries 12 marks

- 28. Prove that the function f(z) = u(x,y) + iv(x,y), z=x+iy is analytic in a domain S iff u and v are continuous functions having continuous partial derivatives satisfying the differential equation $u_x = v_y$ and $u_y = -v_x$.
- 29. Let C be the unit circle $z = e^{i\theta}$ ($-\pi \le \theta \le \pi$). Then show that for real constant a, $\int_{C} \frac{e^{az}}{z} dz = 2\pi i.$ Using this derive the formula $\int_{0}^{\pi} e^{a\cos\theta} \cos(a\sin\theta) d\theta = \pi.$
- 30. (a) State and prove Taylor's theorem.

(b) Obtain the Maclaurin series expansion of $f(z) = \frac{z+1}{z-1}$ and state the region of validity.

31. Using residue theorem evaluate

a.
$$\int_0^{2\pi} \frac{d\theta}{5+4\sin\theta}$$

b.
$$\int_0^\infty \frac{dx}{x^4 + 1}$$