B Sc DEGREE END-SEMESTER EXAMINATION MARCH 2017

SEMESTER - 6: B. Sc. MATHEMATICS (CORE COURCE)

COURCE: U6CRMAT9, U6CRCMT7 - REAL ANALYSIS

Time: 3 hours Max.marks: 75

Part - A

(Each question has one mark. Answer all questions)

- 1 Show that $\sum \frac{n}{n+1}$ is not convergent
- 2 Show that the series $1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\dots$ converges
- 3 State Leibnitz test for an alternating series
- 4 Give an example of a function defined on R which is discontinuous at every point
- 5 Define discontinuity of second kind
- 6 If P_1 and P_2 are two partitions of [a, b] find a partition P_0 of [a, b] such that it is a refinement of P_1 and P_2
- 7 State a necessary and sufficient condition for the intgrability of a bounded function
- 8 Evaluate $\int_0^2 [x] dx$ where [.] denotes the greatest integer function
- 9 State Weierstrass's M- test for uniform convergence
- 10 Distinguish between Point wise convergence and Uniform convergence

Part - B

(Each question has 2 marks. Answer any eight)

- 11 Show that the series $\sum \frac{1}{n}$ does not convergence
- 12 Test for convergence $\frac{1}{3} + \frac{\sqrt{2}}{5} + \frac{\sqrt{3}}{7} + \frac{\sqrt{4}}{9} + \dots$
- 13 If $\sum u_n$ is a positive term series such that $\lim_{n\to\infty} n(\frac{u_n}{u_{n+1}}-1)=1$ then prove that $\sum u_n$ diverges if l>1

- 14 Show that $f(x) = \frac{x |x|}{2}$; $x \ne 0$ and f(x) = 2 at x = 0 has a discontinuity of first kind at x = 0
- 15 Prove that $f(x) = x^2$ is uniformly continuous in [-1,1]
- 16 Show that $f(x) = \begin{cases} 0; if \ x \ is \ rational, \\ 1; if \ x \ is \ irrational, \end{cases}$ is not integrable in [a, b]
- 17 Show that every continuous function is integrable
- 18 If f is continuous & integrable on [a, b] show that \ni a number c between a & b such that

$$\int_{a}^{b} f(x) dx = (b-a)f(c)$$

- 19 Show that $\{f_n\}$ where $f_n(x) = \tan^{-1}(nx)$; x > 0 is uniformly convergent on [a, b]; a > 0
- 20 Test the series $\sum_{1}^{\infty} \frac{Sin \ nx}{n^p}$ for uniform convergence; p > 0

Part - C

(Each question has 5marks. Answer any 5)

- 21 Examine the convergence of the series $\sum_{1}^{\infty} \sqrt{\frac{n}{n+1}} x^n$
- 22 Prove that every absolutely convergent series is convergent. Also prove that the exponential

series
$$1+\frac{x}{1!}+\frac{x^2}{2!}+\frac{x^3}{3!}+\dots$$
converges absolutely for all x

- 23 If a function is continuous on [a, b], then show that it attains its bounds at least once in [a, b]
- 24 State and prove Fixed value theorem
- 25 If f_1 and f_2 are two bounded and integrable functions on [a,b], then prove that f_1+f_2 is also integrable on [a,b]
- 26 State and prove fundamental theorem of integral calculus
- 27 Show that the sequence $\{f_n\}$ where $f_n(x) = \frac{nx}{1+n^2x^2}$ is not uniformly convergent on any interval containing zero

Part - D

(Each question has 12marks. Answer any 2)

- 28 (a) State and prove the limit form of comparison test
- 29 (a) If a function is continuous in a closed interval, prove that it is bounded therein
 - (b) Examine the continuity of $f(x) = \frac{e^{\frac{1}{x}} 1}{e^{\frac{1}{x}} + 1}$; $x \ne 0$ and f(x) = 0, x = 0 at the point x = 0
- 30 (a) If a function is monotonic on [a, b] then prove that it is integrable on [a, b]
 - (b) If f and g are integrable on [a, b] then fg is integrable on [a, b]. Prove.
- 31 (a) State and prove Abel's test for uniform convergence
 - (b) Show that $\sum \frac{x}{n^p + x^2 n^q}$ converges uniformly over any finite interval for p>1and, q> 0