B Sc DEGREE END-SEMESTER EXAMINATION MARCH 2017 SEMESTER - 6: B. Sc. MATHEMATICS (CORE COURCE) COURCE: U6CRMAT9, U6CRCMT7 - REAL ANALYSIS

Time: 3 hours
Max.marks: 75

Part - A

(Each question has one mark. Answer all questions)
1 Show that $\sum \frac{n}{n+1}$ is not convergent
2 Show that the series $1+\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+$ \qquad converges

3 State Leibnitz test for an alternating series
4 Give an example of a function defined on R which is discontinuous at every point
5 Define discontinuity of second kind
6 If P_{1} and P_{2} are two partitions of $[a, b]$ find a partition P_{0} of $[a, b]$ such that it is a refinement of P_{1} and P_{2}

7 State a necessary and sufficient condition for the intgrability of a bounded function
8 Evaluate $\int_{0}^{2}[x] \mathrm{dx}$ where [.] denotes the greatest integer function
9 State Weierstrass's M- test for uniform convergence
10 Distinguish between Point wise convergence and Uniform convergence
Part - B

(Each question has $\mathbf{2}$ marks. Answer any eight)

11 Show that the series $\sum \frac{1}{n}$ does not convergence
12 Test for convergence $\frac{1}{3}+\frac{\sqrt{2}}{5}+\frac{\sqrt{3}}{7}+\frac{\sqrt{4}}{9}+$ \qquad
13 If $\sum u_{n}$ is a positive term series such that $\lim _{n \rightarrow \infty} n\left(\frac{u_{n}}{u_{n+1}}-1\right)=I$ then prove that $\sum u_{n}$ diverges if I > 1

14 Show that $\mathrm{f}(\mathrm{x})=\frac{x-|x|}{2} ; \mathrm{x} \neq 0$ and $\mathrm{f}(\mathrm{x})=2$ at $\mathrm{x}=0$ has a discontinuity of first kind at $\mathrm{x}=0$
15 Prove that $f(x)=x^{2}$ is uniformly continuous in $[-1,1]$
16 Show that $f(x)=\left\{\begin{array}{c}0 ; \text { if } x \text { is rational, } \\ 1 ; \text { if } x \text { is irrational, }\end{array}\right.$ is not integrable in $[a, b]$
17 Show that every continuous function is integrable
18 If f is continuous \& integrable on $[a, b]$ show that \ni a number c between $\mathrm{a} \& \mathrm{~b}$ such that $\int_{a}^{b} f(x) d x=(\mathrm{b}-\mathrm{a}) \mathrm{f}(\mathrm{c})$

19 Show that $\left\{f_{n}\right\}$ where $\mathrm{f}_{\mathrm{n}}(\mathrm{x})=\tan ^{-1}(\mathrm{nx}) ; \mathrm{x}>0$ is uniformly convergent on $[a, b] ; \mathrm{a}>0$
20 Test the series $\sum_{1}^{\infty} \frac{\operatorname{Sin} n x}{n^{p}}$ for uniform convergence; $\mathrm{p}>0$
Part - C
(Each question has 5marks. Answer any 5)
21 Examine the convergence of the series $\sum_{1}^{\infty} \sqrt{\frac{n}{n+1}} x^{n}$
22 Prove that every absolutely convergent series is convergent. Also prove that the exponential series $1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+$. \qquad converges absolutely for all x

23 If a function is continuous on $[a, b]$, then show that it attains its bounds at least once in $[a, b]$
24 State and prove Fixed value theorem
25 If f_{1} and f_{2} are two bounded and integrable functions on $[a, b]$, then prove that $f_{1}+f_{2}$ is also integrable on $[a, b]$

26 State and prove fundamental theorem of integral calculus
27 Show that the sequence $\left\{f_{n}\right\}$ where $f_{n}(\mathrm{x})=\frac{n x}{1+n^{2} x^{2}}$ is not uniformly convergent on any interval containing zero

Part - D

(Each question has 12marks. Answer any 2)

28 (a) State and prove the limit form of comparison test
(b) Show that $\frac{1}{1^{p}}-\frac{1}{2^{p}}+\frac{1}{3^{p}}-\frac{1}{4^{p}}+\cdots \ldots \ldots \ldots \ldots \ldots \ldots$...................... p

29 (a) If a function is continuous in a closed interval, prove that it is bounded therein
(b) Examine the continuity of $f(x)=\frac{e^{\frac{1}{x}}-1}{e^{\frac{1}{x}}+1} ; x \neq 0$ and $f(x)=0, x=0$ at the point $x=0$

30 (a) If a function is monotonic on $[a, b]$ then prove that it is integrable on $[a, b]$
(b) If f and g are integrable on $[a, b]$ then $f g$ is integrable on $[a, b]$. Prove.

31 (a) State and prove Abel's test for uniform convergence
(b) Show that $\sum \frac{x}{n^{p}+x^{2} n^{q}}$ converges uniformly over any finite interval for $\mathrm{p}>1$ and, $\mathrm{q}>0$

