B.Sc. DEGREE END SEMESTER EXAMINATION OCTOBER/NOVEMBER 2018 SEMESTER -5: MATHEMATICS (CORE COURSE) COURSE: 15U5CRMAT8: FUZZY MATHEMATICS
 (Common for Regular 2016 admission \& Supplementary 2015 admission)

Time: Three Hours
Max. Marks: 75

PART A

Answer all questions. Each question carries 1 mark

1. Define characteristics function of a crisp set and membership function of a fuzzy set.
2. Discuss level 2 fuzzy sets.
3. Explain subset hood of a fuzzy set in another fuzzy set.
4. What is an axiomatic skeleton for t-norms.
5. Does there exist discontinuous fuzzy complements. Justify your answer.
6. Define a dual triple.
7. What are fuzzy numbers?
8. How can we define a product of two closed intervals?
9. Discuss Tautology and contradiction.
10. Explain Existential and universal quantifiers.

PART B

Answer any Eight questions. Each question carries 2 marks
11. Define \propto-cuts and strong \propto-cuts of a fuzzy set. Also show that $\alpha^{+} A \subseteq \propto A$.
12. $C(x)=\frac{x}{x+1}, D(x)=1-\frac{x}{10}, x \in X=\{0,1, \ldots, 10\}$. Evaluate $C \cap D$ and $C \cup D$.
13. Prove that $A \subseteq B$ iff $\propto A \subseteq \propto B$
14. Show that sugeno class of complements are involutive.
15. Define a dual triple. Show that $<\min , \max , \mathrm{c}>$ is a dual triple for any fuzzy complement c .
16. Give an example of a t conorm and show that it satisfy the axiomatic skeleton for t-conorms.
17. Give the four arithmetic operations on closed intervals.
18. If A and B are any two fuzzy numbers, then give an expression for the membership function of $A+B$.
19. Define generalized modus ponens.
20. What is meant by generalized hypothetical syllogism?

PART C

Answer any Five questions. Each question carries 5 marks
21. $X=[0,10], A(x)=\frac{x}{x+2^{\prime}}, B(x)=2^{-x}$, Draw the graph of these membership functions and also draw the graph of the membership function of $A \cap B$.
22. Explain height and support of a fuzzy set with examples.
23. Define equilibrium point of a fuzzy complement and dual point of a value between 0 and 1 with respect to a fuzzy complement. Show that if a fuzzy complement has an equilibrium point then the dual point of that equilibrium is itself.
24. Prove that standard fuzzy intersection is the only idempotent t norm.
25. Prove that $\operatorname{MIN}(\operatorname{MIN}(A, B), C)=\operatorname{MIN}(A, \operatorname{MIN}(B, C))$
26. Define a partial order on the set of fuzzy numbers on R. Also define a partial order in terms of \propto cuts
27. $X=\{x 1, x 2, x 3\}, Y=\{y 1, y 2\}, A=\left\{\frac{.5}{x 1}+\frac{1}{x 2}+\frac{.6}{x 3}\right\}, B=\left\{\frac{1}{y 1}+\frac{.4}{y 2}\right\}$, and R is the Lukasiewicz implication. Assume the proposition "If x is A, then y is $B^{\prime \prime}$. Given a fact x is A^{\prime} where $A^{\prime}=$ $\left\{\frac{.6}{x 1}+\frac{0.9}{x 2}+\frac{.7}{x 3}\right\}$ then evaluate B^{\prime} for the inference of the form y is B^{\prime}.

PART D

Answer any Two questions. Each question carries 12 marks
28. Define a convex fuzzy set. State and prove the necessary and sufficient condition for a fuzzy set on \mathbf{R} to be convex.
29. Let c is any involutive fuzzy complement and g is an increasing generator of c, then prove that t norm i and t conorm u generated by g are dual with respect to c. Also prove that $\langle i, u, c\rangle$ satisfy law of excluded middle and law of contradiction.
30. State and prove the necessary and sufficient condition for a fuzzy set A on R to be a fuzzy number
31. Explain the three procedures to make inference from fuzzy propositional quantifiers.
$(12 \times 2=24)$

