# B.Sc. DEGREE END SEMESTER EXAMINATION OCTOBER/NOVEMBER 2018 SEMESTER -5: MATHEMATICS (CORE COURSE) <br> <br> COURSE: 15U5CRMAT7: ABSTRACT ALGEBRA <br> <br> COURSE: 15U5CRMAT7: ABSTRACT ALGEBRA <br> (Common for Regular 2016 admission \& Supplementary 2015 admission) 

Time: Three Hours
Max. Marks: 75

## PART A

Answer All Questions. Each Question carries 1 Mark

1. State true or false: Null set forms a group.
2. Define symmetric group on $n$ letters.
3. Write $\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 2 & 4 & 3 & 1\end{array}\right)$ as a product of transpositions.
4. Define isomorphism.
5. Which are the distinct left cosets of $2 \mathbb{Z}$ in $\mathbb{Z}$ ?
6. State Lagrange's Theorem?
7. Define canonical map from $\mathbb{Z}$ to $\mathbb{Z}_{n}$.
8. Which are the zero divisors in $\mathbb{Z}_{12}$.
9. Define characteristic of a ring.
10. State true or false: Every subring is an ideal.

## PART B

## Answer Any Eight. Each Question carries 2 Marks

11. Prove the uniqueness of identity element in a group.
12. Define Klein -4 group and draw its group table.
13. Show that if $a \in G$, where $G$ is a finite group with identity $e$, then there exist a positive integer $n$ such that $a^{n}=e$.
14. Prove: Every cyclic group is abelian.
15. Prove: Every group is isomorphic to itself.
16. Prove: Every group of prime order is cyclic.
17. Differentiate between unity and unit in a ring, with examples.
18. Prove: $\mathbb{Z}_{n}$ is a field, if $n$ is prime.
19. Prove or disprove: An ideal is always a subring.
20. Prove $n \mathbb{Z}$ is an ideal of $\mathbb{Z}$ and hence find the factor ring $\mathbb{Z} / n \mathbb{Z}$.

## PART C

Answer Any Five. Each Question carries 5 Marks
21. Prove that a cyclic group with only one generator can have atmost 2 elements.
22. Let S be the set of all real numbers except -1. Define * on S by $a * b=a+b+a b$. Show that ( $\mathrm{S},{ }^{*}$ ) forms a group.
23. Find all left cosets of $\langle(1,2)\rangle$ in $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$.
24. Define inner automorphism of G under conjugation by g , and prove that it is an automorphism of G.
25. State and prove characterisation of maximal normal subgroups.
26. Prove: In the ring $\mathbb{Z}_{n}$, the divisors of 0 are precisely those elements which are not relatively prime to $n$.
27. Prove: If a ring $R$ can be partitioned into cells with both the induced operations well defined and if the cells form a ring under these induced operations, then the cell containing additive identity 0 of $R$ will be a subgroup $N$ of the additive group $(R,+)$. Furthermore, $\forall r \in R$ and $\forall n \in N$, both $r n \in N$ and $n r \in N$.

## PART D

## Answer Any Two. Each Question carries 12 Marks

28. Prove: No permutation of a finite set can be expressed both as a product of an even number of transpositions and as a product of an odd number of transpositions.
29. State and prove Cayley's Theorem.
30. (a) Prove: Every field is an integral domain.
(b) Prove: Every finite integral domain is a field.
31. Prove: " If $(N,+)$ is an additive subgroup of the additive group $(R,+)$ in a ring $(R,+,$.$) , then the$ operations of induced addition and induced multiplication on $\{r+N: r \in R\}$ are both well defined iff $r N \subseteq N$ and $N r \subseteq N, \forall r \in R . "$
