\qquad Name.

B. Sc. DEGREE END SEMESTER EXAMINATION OCTOBER/NOVEMBER 2018 SEMESTER -5: MATHEMATICS

(CORE COURSE FOR MATHEMATICS AND COMPUTER APPLICATION)

COURSE: 15U5CRMAT5-15U5CRCMT5: MATHEMATICAL ANALYSIS

(Common for Regular 2016 admission \& Supplementary 2015 admission)
Time: Three Hours
Max. Marks: 75

PART A

Answer all questions. Each question carries 1 mark.

1. Find the infimum and the supremum of the set $\left\{-1, \frac{-1}{2}, \frac{-1}{3}, \frac{-1}{4}, \frac{-1}{5}, \ldots \ldots \ldots\right\}$
2. Define open interval.
3. Define neighborhood of a point a.
4. "The set \mathbf{R} of real numbers is an open set." State whether this statement is true or false.
5. Define limit point of a set.
6. Define the convergence a sequence $\left\{S_{n}\right\}$.
7. Consider the sequence $\left\{\mathrm{S}_{\mathrm{n}}\right\}$ where $\mathrm{S}_{\mathrm{n}}=1 \forall n \in N$. Give a limit point of this sequence, if it has one.
8. State Cesaro's theorem.
9. Write $\frac{1+2 i}{3-4 i}$ in the form a+bi
10. Find the centre and radius of $|z-1+3 i|=2$
$(1 \times 10=10)$

PART B

Answer any eight questions. Each question carries 2 marks.
11. State Archimedean property of real numbers.
12. Prove that the greatest member of a set if it exists, is the supremum of the set.
13. Show that if a set S is bounded then so is its closure \tilde{S}.
14. Show that the set $S=\{x / 0<x<1, x \in R\}$ is open but not closed.
15. Define the derived set of a set S. Obtain the derived set of the open interval (a,b).
16. Find $\lim \frac{2 n-3}{n+1}$
17. Show that for any real number $x, \lim \frac{x^{n}}{n!}=0$
18. Prove that every monotonic increasing sequence which is not bounded above diverges to $+\infty$
19. If z is point such that $|z|<2$, show that $\left|z^{3}+3 z^{2}-2 z+1\right|<25$
20. What is the principal argument $\operatorname{Arg}(-1-i)$? Find also $\arg (-1-i)$.

PART C
Answer any five questions. Each question carries 5 marks.
21. Prove that every open interval (a, b) contains a rational number.
22. Prove that a non-empty finite set is not a neighborhood of any point.
23. Show that the set of rational numbers in the closed interval $[0,1]$ is countable.
24. Prove that every convergent sequence is bounded.
25. Prove that $\lim _{n \rightarrow \infty} \sqrt[n]{n}=1$
26. Show that the sequence $\left\{b_{n}\right\}$ where
$b_{n}=\left\{\frac{1}{(n+1)^{2}}+\frac{1}{(n+2)^{2}}+\frac{1}{(n+3)^{2}}+\cdots+\frac{1}{(2 n)^{2}}\right\}$, converges to zero.
27. Find all the values of $(-8 i)^{\frac{1}{3}}$

PART D

Answer any two questions. Each question carries 12 marks.
28. Prove that the set of rational numbers is not order -complete.
29. State and prove Bolzano-Weierstrass Theorem for sets.
30. State and prove Cauchy's general principle of convergence.
31. (i) If $\left\{a_{n}\right\}$ be a sequence such that $\lim \frac{a_{n+1}}{a_{n}}=l$ where $|l|<1$, then show that $\operatorname{lima} a_{n}=0$.
(ii) Show that the sequence $\left\{S_{n}\right\}$ where $S_{n}=\left(1+\frac{1}{n}\right)^{n}$ is convergent. And that the limit lies between 2 and 3 .
$(12 \times 2=24)$

