B. Sc. DEGREE END SEMESTER EXAMINATION MARCH 2018
 SEMESTER - 4: MATHEMATICS (COMPLEMENTARY COURSE FOR PHYSICS AND CHEMISTRY) COURSE: 15U4CPMAT4: FOURIER SERIES, DIFFERENTIAL EQUATIONS, NUMERICAL ANALYSIS AND ABSTRACT ALGEBRA

Common for Regular (2016 Admission) \& Supplementary (2015 \& 2014 Admissions)
Time: Three Hours
Max. Marks: 75

PART A

Answer all questions. Each question carries 1 mark.

1. Define a periodic function.
2. Write Bessel function of the first kind of order n.
3. Write Legendre's equation.
4. Define partial differential equation.
5. Give an example for a first order partial differential equation in 3 variables.
6. Write a parametric equation of the spherical surface $x^{2}+y^{2}+z^{2}=a^{2}$.
7. Write generalized Newton's formula.
8. Define Absolute error.
9. Give an example for an abelian group.
10. Define a ring.

PART B

Answer any eight questions. Each question carries $\mathbf{2}$ marks.
11. Define even and odd functions with examples.
12. Show that $\Gamma(v+1)=v \Gamma(v)$.
13. Write the Legendre polynomial of degree n.
14. Eliminate the constant a and b from the equation $2 z=(a x+y)^{2}+b$
15. If $\mathrm{F}=\mathrm{ax}^{2}+\mathrm{by}^{2}+\mathrm{cz}^{2}-1$ and $\mathrm{G}=\mathrm{x}+\mathrm{y}+\mathrm{z}-1$ then find $\frac{\partial(F, G)}{\partial(y, z)}$.
16. Evaluate the sum $S=\sqrt{3}+\sqrt{5}+\sqrt{7}$ to 4 significant digits and find its absolute and relative errors.
17. Explain Newton Raphson Method for finding root of an equation.
18. If $u=3 v^{7}-6 v$, find the percentage error in u at $v=1$, if the error in v is 0.05 .
19. Show that every cyclic group is abelian.
20. Define a vector space.

PART C

Answer any five questions. Each question carries 5 marks.
21. Find the Fourier series of the function $f(x)=\left\{\begin{array}{c}0, \text { if }-2<x<-1 \\ k, \text { if }-1<x<1 \\ 0, \text { if } 1<x<2\end{array}, p=2 \mathrm{~L}=4\right.$
22. Solve $y^{\prime}-y=0$ using power series method.
23. Find the integral curves of the equations $\frac{d x}{y(x+y)+a z}=\frac{d y}{x(x+y)-a z}=\frac{d z}{z(x+y)}$
24. Eliminate the arbitrary function f from the equation $z=x y+f\left(x^{2}+y^{2}\right)$
25. Find a real root of the equation $x^{3}-x-1=0$ using bisection method.
26. Explain the Quotient - Difference method to find root of an equation. Illustrate with a cubic Polynomial.
27. Show that the set of real numbers is a field with usal addition and multiplication. $\quad(5 \times 5=25)$

PART D

Answer any two questions. Each question carries 12 marks.
28. Find the Fourier series of the function $f(x)=\left\{\begin{array}{c}1, \text { if }-\pi<x<0 \\ -1, \text { if } \quad 0<x<\pi\end{array}\right.$ and $f(x+2 \pi)=f(x)$
29. Find the general integral of the linear partial differential equation $z(x p-y q)=y^{2}-x^{2}$.
30. Using the method of false position find a real root of the equation $f(x)=x^{3}-2 x-5=0$.
31. (a) Show that Q^{+}with the operation $*$ defined by $a * b=\frac{a b}{2}$ is a group.
(b) Show that the identity element and inverse of each element are unique in a group.
(c) Let A be a nonempty set and S_{A} be the collection of all permutations of A. Then show that S_{A} is a group under permutation multiplication.

