\qquad
\qquad

M SC DEGREE END SEMESTER EXAMINATION - APRIL/MAY 2015
 SEMESTER -2: M SC MATHEMATICS

 COURSE: P2MATT09- PARTIAL DIFFERENTIAL EQUATIONSTime: 3Hours
Max Marks: 75

PART A
 Answer any FIVE questions; 2 marks each

1. Verify that the differential equation $\left(y^{2}+y z\right) d x+\left(x z+z^{2}\right) d y+\left(y^{2}-x y\right) d z=0$ is integrable.
2. Find the integral curves of the equations $\frac{d x}{x+z}=\frac{d y}{y}=\frac{d z}{z+y^{2}}$.
3. Along every characteristic strip of the equation $F(x, y, z, p, q)=0$, the function $F(x, y, z, p, q)$ is a constant.
4. Find a complete integral of the equation $z p q=p+q$.
5. Classify the second order partial differential equations and give example for each.
6. Reduce the equation $u_{x x}+x^{2} u_{y y}=0$ to a canonical form.
7. Show that the surfaces $x^{2}+y^{2}+z^{2}=c, c>0$ can form a family of equipotential surfaces.
8. Solve the one dimensional diffusion equation $\frac{\partial^{2} z}{\partial x^{2}}=\frac{1}{k} \frac{\partial z}{\partial t}$ by separating the variables.

PART B

Answer any FIVE questions; 5 marks each

9. Find the surface which intersects the surfaces of the system $z(x+y)=c(3 z+1)$ orthogonally and which passes through the circle $x^{2}+y^{2}=1, z=1$.
10. Find the integral surface of the linear partial differential equation $x\left(y^{2}+z\right) p-y\left(x^{2}+z\right) q=\left(x^{2}-y^{2}\right) z$ which contains the straight line $x+y=0, z=1$.
11. Explain Charpit's method to find a complete integral of a first order partial differential equation, $f(x, y, z, p, q)=0$.
12. Find a complete integral of the equation $p^{2} x+q^{2} y=z$ by Jacobi's method.
13. Reduce the equation $\frac{\partial^{2} z}{\partial x^{2}}+2 \frac{\partial^{2} z}{\partial x \partial y}+\frac{\partial^{2} z}{\partial y^{2}}=0=$ to canonical form and hence solve it.
14. Find the solution of the equation $\frac{\partial^{2} z}{\partial x^{2}}-\frac{\partial^{2} z}{\partial y^{2}}=x-y$
15. Write a note on Monge's method.
16. Prove that for the equation $\frac{\partial^{2} u}{\partial x \partial y}+\frac{1}{4} u=0$, the Riemann function is $v(x, y ; \alpha, \beta)=$ $J_{0}\left(\sqrt{(x-\alpha)(y-\beta)}\right.$ where J_{0} denote the Bessel's function of the first kind of order zero.

PART C

10 marks each
17. (A) Prove that the Pfaffian differential equation $\vec{X} \cdot d \vec{r}=0$ is integrable if and only if \vec{X}.curl $\vec{X}=0$.

OR

(B) Prove that if $u_{i}\left(x_{1}, x_{2}, \ldots ., x_{n}, z\right)=c_{i} \quad(i=1,2,3, \ldots \ldots, n)$ are independent solutions of the equations $\frac{d x_{1}}{P_{1}}=\frac{d x_{2}}{P_{2}}=\cdots .=\frac{d x_{n}}{P_{n}}=\frac{d z}{R}$, then the relation $\emptyset\left(u_{1}, u_{2}, \ldots \ldots, u_{n}\right)=0$ in which the function \emptyset is arbitrary, is a general solution of the linear partial differential equation

$$
P_{1} \frac{\partial z}{\partial x_{1}}+P_{2} \frac{\partial z}{\partial x_{2}}+P_{3} \frac{\partial z}{\partial x_{3}}+\cdots \ldots \ldots+P_{n} \frac{\partial z}{\partial x_{n}}=R .
$$

18. (A) Using the method of characteristics find the solution of the equation $z=\frac{1}{2}\left(p^{2}+q^{2}\right)+(p-x)(q-y)$ which passes through the x axis.
(B) Prove that the first order partial differential equations $f(x, y, z, p, q)=0$ $\& g(x, y, z, p, q)=0$ are compatible if and only if $[f, g] \equiv 0$.
19. (A) Reduce the equation $y^{2} \frac{\partial^{2} u}{\partial x^{2}}-2 x y \frac{\partial^{2} u}{\partial x \partial y}+x^{2} \frac{\partial^{2} u}{\partial y^{2}}=\frac{y^{2}}{x} \frac{\partial u}{\partial x}+\frac{x^{2}}{y} \frac{\partial u}{\partial y}$ to a canonical form and hence solve it.

OR
(B) If $\alpha_{r} D+\beta_{r} D^{\prime}+\gamma_{r}$ is a factor of $F\left(D, D^{\prime}\right)$ and $\emptyset_{r}(\xi)$ is an arbitrary function of the single variable ξ, then if $\alpha_{r} \neq 0, U_{r}=\exp \left(\frac{-\gamma_{r}}{\alpha_{r}} x\right) \emptyset_{r}\left(\beta_{r} x-\alpha_{r} y\right)$ is a solution of the equation $F\left(D, D^{\prime}\right) z=0$.
20.(A) Solve the equation $r+4 s+t+r t-s^{2}=2$ by Monge's method.

OR

(B) Define the equipotential surfaces. Show that the surfaces $x^{2}+y^{2}+z^{2}=c x^{\frac{2}{3}}$ can form a family of equipotential surfaces and find the general form of the corresponding potential function.

