Reg. No. \qquad Name: \qquad

M SC DEGREE END SEMESTER EXAMINATION - APRIL/MAY 2015
 SEMESTER -2: M SC MATHEMATICS
 COURSE: P2MATT09- PARTIAL DIFFERENTIAL EQUATIONS

Time: 3Hours
Max Marks: 75

PART A
Answer any FIVE questions; 2 marks each

1. Prove that there always exists an integrating factor for a Pfaffian differential equation in two variables.
2. Find the integral surface of the equation $(2 x y-1) p+\left(z-2 x^{2}\right) q=2(x-y z)$ which passes through the line $x_{0}(s)=1, y_{0}(s)=0$ and $z_{0}(s)=s$.
3. Show that the equations $x p-y q=x, x^{2} p+q=x z$ are compatible and find their solution.
4. Find a complete integral of the equation $\left(p^{2}+q^{2}\right) y=q z$.
5. Solve the equation $\frac{\partial^{4} z}{\partial x^{4}}+\frac{\partial^{4} z}{\partial y^{4}}=2 \frac{\partial^{4} z}{\partial x^{2} \partial y^{2}}$.
6. Define hyperbolic, parabolic and elliptic equations. Give example of a parabolic equation.
7. Define Riemann- Green function.
8. Write the Monge's equations for the non linear equation $y^{2} r-2 y s+t=p+6 y$.

PART B

Answer any FIVE questions; 5 marks each
9. Find the orthogonal trajectories on the cone $x^{2}+y^{2}=z^{2} \tan ^{2} \alpha$ of its intersections, with the family of planes parallel to $z=0$.
10. Verify that the differential equation $\left(y^{2}+y z\right) d x+\left(x z+z^{2}\right) d y+\left(y^{2}-x y\right) d z=0$ is integrable and find its primitive.
11. Find a complete integral of the partial differential equation $\left(p^{2}+q^{2}\right) x=p z$ and deduce the solution which passes through the curve $x=0, z^{2}=4 y$.
12. Show that a complete integral of $f\left(u_{x}, u_{y}, u_{z}\right)=0$ is $u=a x+b y+c z+d$ where $f(a, b, c)=0$. Hence find the complete integral of $u_{x}+u_{y}+u_{z}-u_{x} u_{y} u_{z}=0$.
13. If $u_{1}, u_{2}, \ldots \ldots, u_{n}$ are solutions of the homogeneous linear partial differential equation $F\left(\mathrm{D}, D^{\prime}\right) z=0$, then $\sum_{r=1}^{n} c_{r} u_{r}$ where c_{r}^{\prime} s are arbitrary constants, is also a solution.
14. Reduce the equation $\frac{\partial^{2} u}{\partial x^{2}}=x^{2} \frac{\partial^{2} u}{\partial y^{2}}$ to canonical form.
15. The solution of a certain Neumann problem can differ from one another by a constant only.
16. Derive the condition that the surface $f(x, y, z)=c$ form a family of equipotential surfaces.

PART C

10marks each
17. (A) (i) Find the surface which intersects the surfaces of the system $z(x+y)=c(3 z+1)$ orthogonally and which passes through the circle $x^{2}+y^{2}=1, z=1$.
(ii) The general solution of the linear partial differential equation $P p+Q q=R$ is $F(u, v)=0$ where F is an arbitrary function and $u(x, y, z)=c_{1}$ and $v(x, y, z)=c_{2}$ form a solution of the equations $\frac{d x}{P}=\frac{d y}{Q}=\frac{d z}{R}$.

OR
(B) Prove that the Pfaffian differential equation \vec{X}. $\mathrm{d} \vec{r}=0$ is integrable if and only if $\vec{X} . \operatorname{curl} \vec{X}=0$.
18. (A) Find the complete integral of the equation $p^{2} x+q y=z$ and derive the equation of the integral surface containing the line $y=1, x+z=0$ is a generator.

OR

(B) Describe Jacobi's method. Solve the equation $z^{2}+z u_{z}-u^{2}{ }_{x}-u^{2}{ }_{y}=0$ by Jacobi's method.
19. (A) Solve the equation $r-4 s+4 t=e^{2 x+y}$.

OR
(B) Reduce the equation $(n-1)^{2} \frac{\partial^{2} u}{\partial x^{2}}-y^{2 n} \frac{\partial^{2} u}{\partial y^{2}}=n y^{2 n-1} \frac{\partial u}{\partial y}$ to canonical form and find its general solution.
20. (A) Describe Monge's method. Solve $r=t$.

OR
(B) Define Riemann function. Prove that for the equation $\frac{\partial^{2} u}{\partial x \partial y}+\frac{1}{4} u=0$, the Riemann function $(x, y ; \alpha, \beta)=J_{0} \sqrt{(x-\alpha)(y-\beta)}$ where $J_{0}(z)$ denote Bessel's function of the first kind of order zero.

