Reg. No.....

Name:

M SC DEGREE END SEMESTER EXAMINATION – APRIL/MAY 2015

SEMESTER -2: M SC MATHEMATICS

COURSE: P2MATT08- ADVANCED COMPLEX ANALYSIS

Time: 3Hours

Max Marks: 75

PART A Answer any FIVE questions; 2 marks each

1. Prove that the necessary and sufficient condition for the absolute convergence of the product

 $\prod_{1}^{\infty}(1+a_n)$ is the convergence of the series $\sum_{1}^{\infty}|a_n|$.

- 2. Prove that $\Gamma(z)\Gamma(1-z)$ is a meromorphic function without zeros.
- 3. State Arzela's theorem.
- 4. Prove that an entire function of fractional order assumes every finite value infinitely many times.
- 5. State Harnack's Principle.
- 6. If v_1 and v_2 are subharmonic in Ω , then $v = \max(v_1, v_2)$ is subharmonic in Ω .
- 7. Define Homotopy.
- 8. Prove that an elliptic function without poles is a constant.

PART B

Answer any FIVE questions; 5 marks each

- 9. State and prove the Weierstrass theorem for infinite products.
- 10. Prove that $\sin \pi z = \pi z \prod_{1}^{\infty} (1 \frac{z^2}{n^2})$.
- 11. Show that the function $\xi(s) = \frac{1}{2} s (1-s) \pi^{\frac{-s}{2}} \Gamma(\frac{s}{2}) \zeta(s)$ is entire and satisfies $\xi(s) = \xi(1-s)$

where $\zeta(s)$ is Riemann Zeta function.

- 12. State and prove Jensen's formula.
- 13. Define subharmonic function with example and describe the properties of subharmonic functions.
- 14. Derive Schwarz- Christoffel formula.
- 15. Show that the Weierstrass \wp function is the inverse of an elliptic integral.
- 16. State and prove Legendre's relation.

PART C 10 marks each

17.(A) (i) Prove that the infinite product $\prod_{1}^{\infty}(1 + a_n)$ with $1 + a_n \neq 0$ converges simultaneously with the series $\prod_{1}^{\infty} \log(1 + a_n)$ whose terms represent the values of the principal branch

of the logarithm

(ii) Prove that $\pi cot\pi z = \frac{1}{z} + \sum_{n=1}^{\infty} \frac{2z}{z^2 - n^2}$.

OR

(B) Derive Legendre's duplication formula.

18. (A) Derive the functional equation for Riemann zeta function.

OR

- (B) (i) Derive Poisson-Jensen formula.
 - (ii) Prove that the family F is totally bounded if and only if to every compact set $E \subset \Omega$ and every $\varepsilon > 0$ it is possible to find $f_1, f_2, \dots, f_n \varepsilon F$ such that every $f \varepsilon F$ satisfies $d(f, f_j) < \varepsilon$ on E for some f_j .

19. (A) (i) Prove that a continuous function u(z) which satisfies the condition

$$u(z_0) = \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + re^{i\theta}) d\theta$$
 is necessarily harmonic.

(ii) Prove that a continuous function v(z) is subharmonic in Ω if and only if it satisfies the

inequality $v(z_0) \leq \frac{1}{2\pi} \int_0^{2\pi} v(z_0 + r e^{i\theta}) d\theta$ for every disk $|z - z_0| \leq r$ contained in Ω .

OR

(B) State Harnack's principle by proving the corresponding Harnack's inequality.

20. (A) (i) Prove the addition theorem for the \wp function:

$$\wp(u+v) = \frac{1}{4} \left\{ \frac{\wp'(u) - \wp'(v)}{\wp(u) - \wp(v)} \right\}^2 - \wp(u) - \wp(v)$$

(ii) Show that any two bases of the same module are connected by a unimodular transformation.

OR

- (B) (i) Prove that the zeros a_1, \ldots, a_n and poles b_1, \ldots, b_n of an elliptic function satisfy $a_1 + \cdots + a_n \equiv b_1 + \cdots + b_n \pmod{M}$.
 - (ii) Prove that a discrete module consists either of zero alone, of the integral multiples $n\omega$ of a single complex number $\omega \neq 0$, or of all linear combinations $n_1\omega_1 + n_2\omega_2$ with integral coefficients of two numbers ω_1, ω_2 with nonreal ratio $\frac{\omega_2}{\omega_1}$.