\qquad Name: \qquad

M SC DEGREE END SEMESTER EXAMINATION - APRIL/MAY 2015 SEMESTER -2: M SC MATHEMATICS COURSE: P2MATT08- ADVANCED COMPLEX ANALYSIS

Time: 3Hours
Max Marks: 75

PART A
 Answer any FIVE questions; 2 marks each

1. Prove that the necessary and sufficient condition for the absolute convergence of the product $\prod_{1}^{\infty}\left(1+a_{n}\right)$ is the convergence of the series $\sum_{1}^{\infty}\left|a_{n}\right|$.
2. Prove that $\Gamma(z) \Gamma(1-z)$ is a meromorphic function without zeros.
3. State Arzela's theorem.
4. Prove that an entire function of fractional order assumes every finite value infinitely many times.
5. State Harnack's Principle.
6. If v_{1} and v_{2} are subharmonic in Ω, then $v=\max \left(v_{1}, v_{2}\right)$ is subharmonic in Ω.
7. Define Homotopy.
8. Prove that an elliptic function without poles is a constant.

PART B

Answer any FIVE questions; 5 marks each

9. State and prove the Weierstrass theorem for infinite products.
10. Prove that $\sin \pi z=\pi z \quad \prod_{1}^{\infty}\left(1-\frac{z^{2}}{n^{2}}\right)$.
11. Show that the function $\xi(s)=\frac{1}{2} s(1-s) \pi^{\frac{-s}{2}} \Gamma\left(\frac{s}{2}\right) \zeta(s)$ is entire and satisfies $\xi(s)=\xi(1-s)$ where $\zeta(s)$ is Riemann Zeta function.
12. State and prove Jensen's formula.
13. Define subharmonic function with example and describe the properties of subharmonic functions.
14. Derive Schwarz- Christoffel formula.
15. Show that the Weierstrass \wp function is the inverse of an elliptic integral.
16. State and prove Legendre's relation.

PART C
 10 marks each

17.(A) (i) Prove that the infinite product $\prod_{1}^{\infty}\left(1+a_{n}\right)$ with $1+a_{n} \neq 0$ converges simultaneously with the series $\prod_{1}^{\infty} \log \left(1+a_{n}\right)$ whose terms represent the values of the principal branch of the logarithm
(ii) Prove that $\pi \cot \pi z=\frac{1}{z}+\sum_{n=1}^{\infty} \frac{2 z}{z^{2}-n^{2}}$.

OR
(B) Derive Legendre's duplication formula.
18. (A) Derive the functional equation for Riemann zeta function.

OR

(B) (i) Derive Poisson-Jensen formula.
(ii) Prove that the family F is totally bounded if and only if to every compact set $E C \Omega$ and every $\varepsilon>0$ it is possible to find $f_{1}, f_{2}, \ldots, f_{n} \varepsilon F$ such that every $f \varepsilon F$ satisfies $d\left(f, f_{j}\right)<\varepsilon$ on E for some f_{j}.
19. (A) (i) Prove that a continuous function $u(z)$ which satisfies the condition

$$
u\left(z_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(z_{0}+r e^{i \theta}\right) d \theta \text { is necessarily harmonic. }
$$

(ii) Prove that a continuous function $v(z)$ is subharmonic in Ω if and only if it satisfies the inequality $v\left(z_{0}\right) \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} v\left(z_{0}+r e^{i \theta}\right) d \theta$ for every disk $\left|z-z_{0}\right| \leq r$ contained in Ω.

OR

(B) State Harnack's principle by proving the corresponding Harnack's inequality.
20. (A) (i) Prove the addition theorem for the \wp function:

$$
\wp(u+v)=\frac{1}{4}\left\{\frac{\wp^{\prime}(u)-\wp^{\prime}(v)}{\wp(u)-\wp(v)}\right\}^{2}-\wp(u)-\wp(v)
$$

(ii) Show that any two bases of the same module are connected by a unimodular transformation.

OR

(B) (i) Prove that the zeros a_{1}, \ldots, a_{n} and poles b_{1}, \ldots, b_{n} of an elliptic function satisfy $a_{1}+\cdots+a_{n} \equiv b_{1}+\cdots+b_{n}(\bmod M)$.
(ii) Prove that a discrete module consists either of zero alone, of the integral multiples $n \omega$ of a single complex number $\omega \neq 0$, or of all linear combinations $n_{1} \omega_{1}+n_{2} \omega_{2}$ with integral coefficients of two numbers ω_{1}, ω_{2} with nonreal ratio $\frac{\omega_{2}}{\omega_{1}}$.

