MSc DEGREE END SEMESTER EXAMINATION OCTOBER 2015 SEMESTER-1: MATHEMATICS COURSE CODE - P1MATTO5: COMPLEX ANALYSIS-I

Time: 3 Hours
Max. Marks: 75

Part A

Answer any 5 Questions. Each carries 2 marks

1. Show that a linear transformation has atmost two fixed points.
2. Find the linear transformation which carries $0, i,-i$ into $1,-1,0$? Also find the inverse of this transformation?
3. Compute $\int_{|z|=1}|z-1||d z|$ for the positive sense of the circle?
4. Show that if γ is a closed curve lies inside a circle C, then $n(\gamma, a)=0$ for all points a outside the circle C ?
5. Show that the functions e^{z} and $\sin z$ have essential singularities at ∞ ?
6. Show that if Ω is a simply connected region, then $n(\gamma, a)=0$ for all cycles γ in Ω and all points $a \notin \Omega$?
7. How many roots of the equation $z^{7}-2 z^{5}+6 z^{3}-z+1=0$ are in $\{z:|z|<1\}$?
8. State The Residue Theorem?

$$
2 \times 5=10
$$

Part B

Answer any 5 Questions. Each carries 5 marks
9. An analytic function in a region Ω degenerates if it reduces to a constant. Show that if f is analytic on a region Ω and $\arg f(z)$ is constant, then f degenerates in Ω.
10. If $S z=\frac{z+2}{z+3}, T z=\frac{z}{z+1}$, find $S T z, T S z$ and $S^{-1} T z$?
11. Let $a \in \mathbb{C}$ and γ be a piecewise differentiable closed curve which doesn't pass through the point a. Show that the integral $\frac{1}{2 \pi i} \int_{\gamma} \frac{d z}{z-a}$ takes integer values?
12. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be analytic, such that $f(\mathbb{C})=\{f(z) \mid z \in \mathbb{C}\}$ is contained in the open unit disk. Show that f is a constant?
13. Show that a non-constant analytic function map open sets onto open sets?
14. Show that if $f(z)$ is analytic, non-constant and non-vanishing (that is, $f(z) \neq 0$ for all z) in a region Ω, the $|f(z)|$ has no minimum value in Ω ?
15. Show that if a function u is harmonic in a disk $B(0 ; R)$ then $\frac{1}{2 \pi} \int_{|z|=r} u d \theta$ is a constant for every $0<r<R$?
16. Find the poles and residues of
(a) $\frac{1}{\sin z}$
(b) $\frac{1}{z^{m}(1-z)^{n}}, \quad m, n \in \mathbb{Z}^{+}$.

Part C

Answer either (a) or (b) of the following four questions. Each carries 10 marks
17. (a) Show that the cross ratio $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ is real if, and only if the four points lie on a circle or on a straight line?
(b) Describe the Riemann surface associated with the function

$$
w=\frac{1}{2}\left(z+\frac{1}{z}\right) .
$$

18. (a) Suppose that $\phi(t)$ is continuous on the arc γ. For $n \in \mathbb{Z}^{+}$, define

$$
F_{n}(z)=\int_{\gamma} \frac{\phi(t)}{(t-z)^{n}} d t
$$

Show that F_{n} is analytic in each of the regions determined by γ and its derivative $F_{n}^{\prime}(z)=$ $n F_{n+1}(z)$ for all z ?
(b) i. Prove that a function which is analytic in the whole plane and satisfies an inequality $|f(z)|<|z|^{n}$ for some n and all sufficiently large $|z|$ reduces to a polynomial?
ii. State and prove fundamental theorem of algebra?
19. (a) Show that if $f(z)$ is analytic in a simply connected region Ω, then

$$
\int_{\gamma} f(z) d z=0
$$

for every cycle γ in Ω ?
(b) Show that, if $p d x+q d y$ is locally exact in a region, then

$$
\int_{\gamma} p d x+q d y=0
$$

for every cycle $\gamma \sim 0$ in Ω ?
20. (a) State and prove Schwarz's Theorem?
(b) Show that

$$
\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}
$$

$$
10 \times 4=40
$$

