Reg. No.

Name:....

MSc DEGREE END SEMESTER EXAMINATION OCTOBER 2015 SEMESTER-1: MATHEMATICS COURSE CODE - P1MATTO5: COMPLEX ANALYSIS-I

Time: 3 Hours

Max. Marks: 75

Part A

Answer any 5 Questions. Each carries 2 marks

- 1. Show that a linear transformation has atmost two fixed points.
- 2. Find the linear transformation which carries 0, i, -i into 1, -1, 0? Also find the inverse of this transformation?
- 3. Compute $\int_{|z|=1} |z-1| |dz|$ for the positive sense of the circle?
- 4. Show that if γ is a closed curve lies inside a circle *C*, then $n(\gamma, a) = 0$ for all points *a* outside the circle *C*?
- 5. Show that the functions e^z and $\sin z$ have essential singularities at ∞ ?
- 6. Show that if Ω is a simply connected region, then $n(\gamma, a) = 0$ for all cycles γ in Ω and all points $a \notin \Omega$?
- 7. How many roots of the equation $z^7 2z^5 + 6z^3 z + 1 = 0$ are in $\{z : |z| < 1\}$?
- 8. State The Residue Theorem?

 $2 \times 5 = 10$

Part B

Answer any 5 Questions. Each carries 5 marks

- 9. An analytic function in a region Ω degenerates if it reduces to a constant. Show that if f is analytic on a region Ω and $\arg f(z)$ is constant, then f degenerates in Ω .
- 10. If $Sz = \frac{z+2}{z+3}$, $Tz = \frac{z}{z+1}$, find STz, TSz and $S^{-1}Tz$?
- 11. Let $a \in \mathbb{C}$ and γ be a piecewise differentiable closed curve which doesn't pass through the point *a*. Show that the integral $\frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z-a}$ takes integer values?
- 12. Let $f : \mathbb{C} \to \mathbb{C}$ be analytic, such that $f(\mathbb{C}) = \{f(z) | z \in \mathbb{C}\}$ is contained in the open unit disk. Show that f is a constant?
- 13. Show that a non-constant analytic function map open sets onto open sets?
- 14. Show that if f(z) is analytic, non-constant and non-vanishing (that is, $f(z) \neq 0$ for all z) in a region Ω , the |f(z)| has no minimum value in Ω ?
- 15. Show that if a function *u* is harmonic in a disk B(0;R) then $\frac{1}{2\pi} \int_{|z|=r} u d\theta$ is a constant for every 0 < r < R?

16. Find the poles and residues of (a)
$$\frac{1}{\sin z}$$
 (b) $\frac{1}{z^m(1-z)^n}$, $m,n \in \mathbb{Z}^+$.
 $5 \times 5 = 25$

Part C

Answer either (a) or (b) of the following four questions. Each carries 10 marks

- 17. (a) Show that the cross ratio (z_1, z_2, z_3, z_4) is real if, and only if the four points lie on a circle or on a straight line?
 - (b) Describe the Riemann surface associated with the function

$$w = \frac{1}{2} \left(z + \frac{1}{z} \right).$$

18. (a) Suppose that $\phi(t)$ is continuous on the arc γ . For $n \in \mathbb{Z}^+$, define

$$F_n(z) = \int_{\gamma} \frac{\phi(t)}{(t-z)^n} dt.$$

Show that F_n is analytic in each of the regions determined by γ and its derivative $F'_n(z) = nF_{n+1}(z)$ for all z?

- (b) i. Prove that a function which is analytic in the whole plane and satisfies an inequality $|f(z)| < |z|^n$ for some *n* and all sufficiently large |z| reduces to a polynomial?
 - ii. State and prove fundamental theorem of algebra?
- 19. (a) Show that if f(z) is analytic in a simply connected region Ω , then

$$\int_{\gamma} f(z) dz = 0$$

for every cycle γ in Ω ?

(b) Show that, if pdx + qdy is locally exact in a region, then

$$\int_{\gamma} p dx + q dy = 0$$

for every cycle $\gamma \sim 0$ in Ω ?

- 20. (a) State and prove Schwarz's Theorem?
 - (b) Show that

$$\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}$$

 $10 \times 4 = 40$