P326	Reg.No:	Name:
	11001110	1441116

MSc DEGREE EXAMINATION OCTOBER 2015 SEMESTER - 3, MATHEMATICS

COURSE CODE: P3MATT13- DIFFERENTIAL GEOMETRY

Time: 3 Hours Max.Marks:75

Part A

(Answer any 5 questions. Each carriers 2 marks)

- 1. Define the terms Graph and Level set of a function $f: U \rightarrow R$; $U \subset R^{n+1}$
- 2. Find the Integral curve through (a b) for the vector field X(p)=(p, X(p)) where X(p)=-p
- 3. Define the Gauss map
- 4. Prove that the Covariant derivative is independent of the choice of orientation
- 5. Find ∇_{y} f where f = $2x_1^2 + 3x_2^2$; v= (1,0,2,1)
- 6. What do you mean by Curvature of a plane curve
- 7. Define Normal section of an n- surface at p determined by a unit vector **v**
- 8. State Inverse function theorem for an n-surface

Part B

(Answer any 5 questions .Each carriers 5 marks)

- 9. Let U be an open set in R^{n+1} . **X** be a smooth vector field on U. Suppose $\alpha: I \to U$ is an integral curve of **X** with $\alpha(0)=\alpha(t_0)$ for some $t_0 \in I$; $t_0 \ne 0$, show that α is periodic
- 10. Let S be an n surface in Rⁿ⁺¹, S= f⁻¹(c) where f: U \rightarrow R is such that $\nabla f(q) \neq 0$ for all q ϵ S. Suppose g: U \rightarrow R is a smooth function and p ϵ S is an extreme point of g on S ,then prove that there exists a real number λ such that $\nabla g(p) = \lambda \nabla f(p)$
- 11. Prove that Geodesics have constant speed
- 12. Let S be an n- surface in R^{n+1} , let p, q ϵ S and let α be a piecewise smooth parameterized curve from p to q. Prove that $P\alpha: S_p \to S_q$ along α is linear and one to one
- 13. Compute the Weingarten map for the sphere $x_1^2 + x_2^2 + \dots x_{n+1}^2 = r^2$; r > 0 oriented by $\mathbf{N} = -\frac{\nabla f}{\|\nabla f\|}$
- 14. Prove that length of a parameterized curve is invariant under re parameterization