- 15. Let S be an oriented n- surface in R^{n+1} and let \mathbf{v} be a unit vector in S_p , $p \in S$. Prove that there exists an open set V subset of R^{n+1} containing p such that $S \cap \mathcal{N}(V) \cap V$ is a plane curve
- 16. Define a parameterized n-surface in Rⁿ⁺¹. Also give an example

Part C

(Answer either part a or part b .Each question carriers 10 marks)

- 17. (a) Let U be an open set in Rⁿ⁺¹ and let $f: U \to R$ be smooth. Let $p \in U$ be a regular point of f, and let c = f(p). Prove that the set of all vectors tangent to $f^{-1}(c)$ at p is equal to $(\nabla f(p))^{\perp}$
 - (b) Let $S \subset \mathbb{R}^{n+1}$ be a connected n surface in \mathbb{R}^{n+1} . Prove that there exist on S exactly two smooth unit normal vector fields \mathbb{N}_1 and \mathbb{N}_2 and $\mathbb{N}_2(p) = -\mathbb{N}_1(p)$ for all $p \in S$
- 18(a) Define spherical image of an oriented n surface. Also describe the spherical image of the cylinder $x_2^2 + \dots x_{n+1}^2 = 1$ oriented by $\frac{\nabla f}{\|\nabla f\|}$ when n=1 and n=2
 - (b) Let S be a 2 surface in R³ and let $\alpha: I \rightarrow S$ be a geodesic in S with $\dot{\alpha} \neq 0$. Prove that a vector field \mathbf{X} tangent to S along α is parallel along α iff both $\parallel \mathbf{X} \parallel$ and the angle between \mathbf{X} and $\dot{\alpha}$ are constant along α
- 19(a) Let C be a connected oriented plane curve and let $\beta: I \to C$ be a unit speed global Parameterization of C. Prove that β is either one to one or periodic
 - (b)Let S be the Ellipsoid $\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} + \frac{x_3^2}{c^2} = 1$, (a, b, c \neq 0) oriented by the outward normal. Find the Gaussian curvature K (p)
- 20_1 (a) Let $\psi(\theta, \phi) = ((a+b\cos\phi)\cos\theta, (a+b\cos\phi)\sin\theta$, b $\sin\phi$) be the parameterized torus in R³. Find the Gaussian curvature
 - (b) Let V be a finite dimensional vector space with dot product and let L: $V \rightarrow V$ be a self ad joint linear transformation on V .Prove that there exists an orthonormal basis for V consisting of Eigen vectors of L