Scheme of Valuation

MSc DEGREE END SEMESTER EXAMINATION - OCTOBER 2016

SEMESTER -1: MATHEMATICS

COURSE: 16P1MATT02 - BASIC TOPOLOGY
Max. Marks :75

PART A

1. Definition of base on Page $92 \quad \frac{1}{2}$ Mark

Discrete topology $\quad 1$ Mark
2. Answer is "No" $\frac{1}{2}$ Mark

Any counter example 1 Mark
3. Identifying the subspace topology as discrete topology 1 Mark

Concluding $\{0\}$ is open $\quad \frac{1}{2}$ Mark
4. Answer is "No" $\frac{1}{2}$ Mark

Example of an open set in Euclidean topology but not in semi-open interval topology

1 Mark
5. Answer is "No" $\quad \frac{1}{2}$ Mark

Any counter example $\quad 1$ Mark
6. Let Y be a subspace of X where X has a countable dense subset D. $\frac{1}{2}$ Mark Proving $D \bigcap Y$ is dense in $Y \quad 1$ Mark
7. Identifying the statement is not true $\quad \frac{1}{2}$ Mark

Any counterexample $\quad 1$ Mark
8. Counterexamples given on Page $151 \quad 1 \frac{1}{2}$ Marks
9. Page 161 : Proposition 7.1.6 $1 \frac{1}{2}$ Marks
10. Suitable argument with co-countable topology $1 \frac{1}{2}$ Marks

PART B

11. Definition of open ball
$\frac{1}{2}$ Mark
Definition of closed ball $\quad \frac{1}{2}$ Mark
Identifying the statement is not true 1 Mark
Counterexample (may use discrete topology) 3 Marks
12. Definition 1 Mark

Necessary part 1 Mark
Sufficiency Part 3 Marks
13. Definition on Page 1271 Mark

Proof of Proposition 5.4.10 on Page 1274 Marks
14. i. proof of compact in the cofinite topology 3 Marks
ii. $\{\{x\} ; x \in \mathbb{R}\}$ is an open covering of \mathbb{R} that has no finite subcover 2 Marks
15. By looking at the image \mathbb{Q} of $\mathbb{Q} \times \mathbb{Q}$ under projection map, we get $\mathbb{Q} \times \mathbb{Q}$ is disconnected 2 Marks
Proving complement is path connected and hence connected 3 Marks
16. Proof of proposition 7.1 .4 on Page $164 \quad 5$ Marks

PART C

17. (a) Page:97-98 Proving Product topology is stronger Converse

5 Mark
5 Marks
(b) Two definitions on Page 105 \& 1132 Marks

Proof of Theorem 5.2.9 on page 1138 Marks
18. (a) Define $F: x \rightarrow(x, f(x))$ which is clearly a bijection 2 Marks

Showing F is continuous 6 Marks
Proving F^{-1} exists and equals the restriction of projection 2 Marks
(b) Existence of weak topology Page : $125 \quad 4 \frac{1}{2}$ Marks

Definition of weak topology
$\frac{1}{2}$ Mark
Topology generated by $\{(-\infty, 0),(-\infty, 0],(0, \infty),[0, \infty)\} \quad 5$ Marks
19. (a) Proof of Theorem 6.2.6 on Page:144

10 Marks
(b) Definition on Page 150

Proof of Proposition 6.3.6 on page 152-153 9 Marks
20. (a) Proof of Theorem 7.1.15 on Page 164-165: Proving (i \Rightarrow ii). 4 Marks

Proving (ii \Rightarrow iii). 3 Marks
Proving (iii \Rightarrow i). 3 Marks
(b) Proof of Theorem 7.2.8 on Page 170-171 10 Marks

