Scheme of Valuation MSc DEGREE END SEMESTER EXAMINATION - OCTOBER 2016

SEMESTER -1: MATHEMATICS

COURSE: 16P1MATT02 - BASIC TOPOLOGY

. Max. Marks :75

PART A

PART A		
1.	Definition of base on Page 92 Discrete topology	$\frac{1}{2}$ Mark 1 Mark
2.	Answer is "No" Any counter example	$\frac{1}{2}$ Mark 1 Mark
3.	Identifying the subspace topology as discrete topology Concluding $\{0\}$ is open	$\begin{array}{c} 1 \ \mathrm{Mark} \\ \frac{1}{2} \ \mathrm{Mark} \end{array}$
4.	Answer is "No" Example of an open set in Euclidean topology but not in semi-open topology	$\frac{1}{2}$ Mark interval 1 Mark
5.	Answer is "No" Any counter example	$\frac{1}{2}$ Mark 1 Mark
6.	Let Y be a subspace of X where X has a countable dense subset D . Proving $D \cap Y$ is dense in Y	$\frac{1}{2}$ Mark 1 Mark
7.	Identifying the statement is not true Any counterexample	$\frac{1}{2}$ Mark 1 Mark
8.	Counterexamples given on Page 151	$\frac{1}{2}$ Marks
9.	Page 161: Proposition 7.1.6	$\frac{1}{2}$ Marks
10.	Suitable argument with co-countable topology	$\frac{1}{2}$ Marks
PART B		
11.	Definition of open ball Definition of closed ball Identifying the statement is not true Counterexample (may use discrete topology)	$\frac{1}{2}$ Mark $\frac{1}{2}$ Mark 1 Mark 3 Marks
12.	Definition Necessary part Sufficiency Part	1 Mark 1 Mark 3 Marks
13.	Definition on Page 127 Proof of Proposition 5.4.10 on Page 127	1 Mark 4 Marks
14.	i. proof of compact in the cofinite topology ii. $\{\{x\};x\in\mathbb{R}\}$ is an open covering of $\mathbb R$ that has no finite subcover	3 Marks 2 Marks

15. By looking at the image \mathbb{Q} of $\mathbb{Q} \times \mathbb{Q}$ under projection map, we get $\mathbb{Q} \times \mathbb{Q}$ is 2 Marks disconnected 3 Marks Proving complement is path connected and hence connected 16. Proof of proposition 7.1.4 on Page 164 5 Marks PART C 5 Mark (a) Page:97-98 Proving Product topology is stronger 5 Marks Converse (b) Two definitions on Page 105 & 113 2 Marks Proof of Theorem 5.2.9 on page 113 8 Marks (a) Define $F: x \to (x, f(x))$ which is clearly a bijection 2 Marks Showing F is continuous 6 Marks Proving F^{-1} exists and equals the restriction of projection 2 Marks (b) Existence of weak topology Page: 125 $4\frac{1}{2}$ Marks $\frac{1}{2}$ Mark Definition of weak topology Topology generated by $\{(-\infty, 0), (-\infty, 0], (0, \infty), [0, \infty)\}$ 5 Marks 19. (a) Proof of Theorem 6.2.6 on Page:144 10 Marks (b) Definition on Page 150 1 Mark Proof of Proposition 6.3.6 on page 152-153 9 Marks 20. (a) Proof of Theorem 7.1.15 on Page 164-165: Proving ($i \Rightarrow ii$). 4 Marks Proving (ii \Rightarrow iii). 3 Marks Proving (iii \Rightarrow i). 3 Marks (b) Proof of Theorem 7.2.8 on Page 170-171 10 Marks