Name:		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
Reg.	No.:		•					•	•	•				•		•	•	•	•	

MSc DEGREE END SEMESTER EXAMINATION - OCTOBER 2016 SEMESTER -1: MATHEMATICS COURSE: 16P1MATT02 - BASIC TOPOLOGY

Time:3 hours

Max. Marks :75

PART A

Answer all questions. Each carries 1.5 marks.

- 1. Define a base of a topological space (X, \mathfrak{T}) . Describe the topology on X having $\{\{x\}; x \in X\}$ as a basis.
- 2. Is $int(A \bigcup B) = int(A) \bigcup int(B)$ for sets A, B in a topological space? Justify.
- Suppose Z has the subspace topology induced by the Euclidean topology on R. Is {0} open in Z? Justify.
- 4. Let $\mathfrak{T}_1, \mathfrak{T}_2$ denote the semi open interval topology and Euclidean topology on \mathbb{R} respectively. Is the identity map $id : (\mathbb{R}, \mathfrak{T}_1) \to (\mathbb{R}, \mathfrak{T}_2)$ continuous? Justify.
- 5. Is every quotient map open? Justify.
- 6. Show that separability is preserved under continuous functions.
- 7. Prove or disprove that the interior of a connected set is connected
- 8. Give an example of a space which is connected but not locally connected.
- 9. Show that the limits of sequences are unique in a Hausdorff space.
- 10. Give an example of a space in which every compact subset is closed but which is not Hausdorff.

1.5 imes 10 = 15

PART B

Answer any 4 questions. Each carries 5 marks.

- 11. Define an open ball and a closed ball in a metric space. Prove or disprove: In a metric space, a closed ball is the closure of the open ball with the same centre and radius.
- 12. Define a dense subset in a topological space (X, \mathfrak{T}) . If \mathfrak{B} is any base for (X, \mathfrak{T}) , prove that a subset $D \subset X$ is dense in X if and only D intersects every non-empty member of \mathfrak{B} .

- 13. Define a quotient map. Show that every closed, surjective map is a quotient map.
- 14. Is \mathbb{R} compact in the i) cofinite topology ii) discrete topology?
- 15. Is $\mathbb{Q} \times \mathbb{Q}$ connected in \mathbb{R}^2 with the Euclidean topology? What about the complement of $\mathbb{Q} \times \mathbb{Q}$ in \mathbb{R}^2 ?
- 16. Show that every Tychonoff space is regular.

 $4 \times 5 = 20$

PART C

Answer either (a) or (b) of the following 4 questions. Each carries 10 marks.

- 17. (a) Show that the product topology and Euclidean topology on \mathbb{R}^n coincide.
 - (b) Define closure \overline{A} and derived set A' of a subset A of a space X and show that $\overline{A} = A \bigcup A'$.
- 18. (a) If $f: X \to Y$ is a continuous function, then show that $\{(x, f(x)); x \in X\}$ is homeomorphic to X.
 - (b) Let $\{(Y_i, \mathfrak{T}_i); i \in I\}$ be a family of topological spaces and $f_i : X \to Y_i$ be functions for each $i \in I$. Define the weak topology determined by f'_is and prove its existence. Describe the weak topology on the real line \mathbb{R} generated by the single function $f : \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} -1 & \text{if } x < 0; \\ 0 & \text{if } x = 0; \\ 1 & \text{if } x > 0. \end{cases}$$

- 19. (a) Show that every closed and bounded interval is compact.
 - (b) Define a locally connected space. Show that every quotient space of a locally connected space is locally connected.
- 20. (a) Show that the following statements are equivalent in a topological space X
 - i. X is regular
 - ii. For any $x \in X$ and an open set G containing x, there is an open set H containing x such that $\overline{H} \subset G$
 - iii. The family of all closed neighborhoods of any point of X forms a local base at that point.
 - (b) Show that every regular, Lindelöff space is normal. $10 \times 4 = 40$