

SACRED HEART COLLEGE (AUTONOMOUS)

THEVARA, KOCHI -13

(Affiliated to Mahatma Gandhi University, Kottayam)

Re	g. No	
Na	ne	

B. Sc. DEGREE EXAMINATION-NOVEMBER 2014

FIRST SEMESTER - MATHEMATICS (COMPLEMENTARY) COURSE-1: U1CPMAT1: DIFFERENTIAL CALCULUS AND TRIGONOMETRY

Time: Three Hours

Max. Marks:75

Part A(Short Answer Questions)

Answer all questions. Each question carries 1 mark.

- 1. If f(z) = 2.0001, find $\lim_{z \to 2} f(z)$.
- 2. Give an example of a function whose first derivative and second derivative are the same.
- 3. State the product rule in differentiation.
- 4. Find the slope of the line, which is tangent to the curve $y = \sin^5 x$ at the point $x = \pi/3$.
- 5. State Rolle's Theorem.
- 6. Find the critical points of $4 x^2$ in [-3,1].
- 7. Write the order and degree of $\frac{\partial^3 y}{\partial y^2 \partial x} = \left(\frac{\partial^2 y}{\partial \mathbf{x}^2}\right)^2$
- 8. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ of $f(x,y)=(x^2-1)(y+2)$.
- 9. Define hyperbolic cosine of x.
- 10. Separate sinh $(\alpha + i\beta)$ into real and imaginary parts.

(10 X 1 = 10)

Part B (Brief Answer Questions)

Answer any eight questions. Each question carries 2 marks.

- 11. Find $\lim_{x\to 0} \frac{\tan 8x}{\sin 3x}$.
- 12. Find $\frac{dy}{dx}$ when $x = -\sqrt{u}$ and y = u.
- 13. Find $\frac{d^2y}{dx^2}$, when $y = \sec(\tan x)$.
- 14. Verify Lagrange's Mean Value Theorem for $x + \frac{1}{x}$, in $[\frac{1}{2}, 2]$.
- 15. Find the maximum and minimum values of f(x) = |x-5| in $4 \le x \le 7$.
- 16. Use chain rule to find $\frac{dw}{dt}$, where $w = x^2 + y^2$, $x = \cos t$, $y = \sin t$.

- 17. Find all the second-order partial derivatives of $f(x,y) = \sin xy$.
- 18. Verify Laplace equation for $f(x, y, z) = 2z^3 3(x^2 + y^2)z$.
- 19. State expansions for $\sin x$ and $\cos x$ in terms of x.
- 20. Prove that $\sinh 3x = 3 \sinh x + 4 \sinh^3 x$.

(8 X 2 = 16)

Part C (Short Essay Type Questions)

Answer any five questions. Each question carries 5marks.

- 21. Find dy/dt, where $y = 4\sin(\sqrt{1+\sqrt{t}})$.
- 22. Differentiate $\tan x$ w.r.t. x using first principle.
- 23. Find dy/dx, where $x + \sin y = xy$.
- 24. Find the absolute maximum and minimum values of $h(x) = \sqrt[3]{x}$ in the interval $-1 \le x \le 8$.
- 25. Find $\frac{\partial w}{\partial u}$ and $\frac{\partial w}{\partial v}$ at $(u,v)=(\frac{1}{2},1)$, where $w=xy+yz+xz,\, x=u+v,\, y=u-v,\, z=uv.$
- 26. Express $\sin^6 \theta$ in a series of cosines of multiples of θ .
- 27. Sum to n terms the series $\sin^3 \frac{\theta}{3} + 3 \sin^3 \frac{\theta}{3^2} + 3^2 \sin^3 \frac{\theta}{3^3} + \cdots$

(5 X 5 = 25)

Part D (Essay)

Answer any two questions. Each question carries 12marks.

- 28. Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ of $x = \cos t$, $y = \sqrt{3}\cos t$ at $t = \pi/3$.
- 29. Consider $f(x) = 3x^2 4x^3$
 - (a) What are the critical points of f?
 - (b) Find the intervals on which the function is increasing and decreasing.
 - (c) Find the local minimum and maximum.
- 30. Find all the second order partial derivatives of the function: $f(x,y) = \frac{2x}{y + \sin x}$.
- 31. Separate into real and imaginary parts $\sin^{-1}(\cos\theta + i\sin\theta)$.

 $(2 \times 12 = 24)$